AD-A259 292 o 1/
kI ANRRAE

AFIT/GCS/ENG/92D-23

DESIGN RECOVERY FOR SOFTWARE
LIBRARY POPULATICN

_ THESIS . C
Chester A. Wright, Jr. DT ‘

Captain, USAF ELECT 53
19
AFIT/GCS/ENG/$2D-23 s JAN1 4

SN T
C R AR

- ""93-00089 17
i LT

Approved for public relesse; distribution unlimited

AFIT/GCS/ENG/92D-23

DESIGN RECOVERY FOR SOFTWARE LIBRARY POPULATICN

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air Unjversity
In Partial Fulfilinient of the
Requirements for the Degree of DIIC QUALLTY (NSPECTED 5

Master of Science (Computer Engineering)

Accesion For

NTIS CRA&I]
DTIC TAB
Unannounced O

Justification o)
Chester A. Wright, Jr., A.A.S., B.S. —

By
Distrioution |

Captain, USAF

Availability Codes

Dist Avail aqdfor
December, 1992 Special

il |

Approved for public release; distribution unlimited

Preface

The purpose of the study was to investigate the possibility of recovering the design of existing
software to populate a reuse library. The immediate need is to populate the Automatic Program-
ming Technologies for Avionics Systems (APTAS) library, but the approach used should be valid

for general library population.

There were many people that helped me tremendously throughout this project. I would like
to express my appreciation to my sponsor, John Werthmann from Wright Laboratories/AART,
for allowing me the opportunity to learn and discover while applying school studies to a real-
world problem. I am most grateful to my advisor, Captain James Cardow for his patience and
perseverance in his eflort to lead and guide me in the right direction. Finally, many thanks and my
love to my wife Tami for her concern, pressure, and understanding during the many early mornings

of study.

Chester A. Wright, Jr.

Table of Contents

Preface . . . 0 . i i e e e e e e e e e e e e
Tableof Contents v v v it i i i e e e e
Listof Figures o i i it i e e e e e e e
AbStract . . . v v o i e e e e e e e e e
L Introduction L e e e e
1.1 Background e

1.1.1 Executable Specifications

1.1.2 Automatic Program Generation

1.1.3 Combining Executable Specifications and Automatic Program

Generation v v i i i e e e

1.2 Automatic Programming Technologies for Avionics Software (APTAS)

1.3 Problem Statement e

14 Assumptions v v it it i e e e e e e

1.5 Scope . . e e e e e

1.6 Summary of Current Knowledge

1.7 Approach/Methodology

1.8 Maierialsand Equipment

1.9 Sequence of Presentation,

II. Literature Review o e
2.1 Introduction

2.2 Reengineering i e

221 Byrne’sModel

iii

Page

ii

i

vi

vii

1-1

1-1

2-1
2-1
2-2

2-3

Page

2.2.2 Software Design Recovery 2-9

2.3 Automatic System Generation, ..., 2-11
2.3.1 The Draco Approach 2-11

23.2 Issueso it e e 2-12

24 APTAS . . . e e 2-13
2.5 APTAS Library Population 2-16
2.6 Review Summary e 2-18
III. Methodology o i i i e 3-1
3.1 Analysis and Planning Phase 3-1
3.2 System Renovation Phase, 3-3
3.2.1 Background o e 3-4

3.2.2 Source Code Analysis 3-6

3.2.3 DesignRecovery 3-8

3.2.4 Information Inspection and Redesign 39

5.2.5 Reimplementation, 3-9

3.3 Library Population 3-10
3.3.1 Source Cude Analysis 3-10

33.2 DesignRecovery o, 3-13

3.3.3 Information Inspection and Redesign 3-14

3.3.4 Reimplementation 3-15

3.4 SUMIMATY « v v v v v e e et et e b e e e et e e e e e e e 3-15
IV. Implementation e e e e e 4-1
4.1 Introduction e 4-1
4.2 Preliminaries e 4-1
4.3 Source Code Analysis e 4-2
4.4 Design Recovery e 4-3

iv

Page

4.5 Information Inspection 4-4

4.6 Redesimn e 4-5

4.7 Reimplementation 0 ... 4-6

4.8 Summary e e e e e e e e e 4-7

V. Conclusion and Recommendations, 5-1
5.1 Conclusion . . v v v i i e e e e e e e e e e 5-1

5.2 Recommendations i ., 5-1

5.2.1 The KnowledgeBase 5-1

5.2.2 SelectingModules 5-2

5.2.3 TranslatingModules 5-2

Appendix A. Module Characteristics A-1
Al Description i e e e e e A-1

A2 ICON Representation A-2

A3 Components e A-3

A4 Synthesis e A-3

A5 Selection e e A4

Appendix B. System Structure and Population B-1
Appendix C. Summary of Z Notation C-1
Appendix D. Selected FORTRAN Module D-1
Appendix E. Developed CipL Module E-1
Bibliography e e BIB-1
VA e e e e e e e e e VITA-1

Figure

1.1,
1.2.
1.3.

2.1
2.2,
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

3.1.

List of Figures

Page
Classical Software Lifecycle Model 1-2
Automatic Program Generation 1-3
Design Recovery for Software Library Population. 1-6
Overall Thesis Effort 2-1
Relationship Between Terms 2-3
Control Area Relationships 2-4
Control Areas and Interest ftems 2-6
Reengineering Process Phases 2-7
APTAS Organizational Diagram 2-14
GUI Representationofa Module 2-15
Run-Time Display o e 2-17
Sample CIDL Module 2-18
Analysis and Planning Phase 3-2

vi

AFIT/GCS/ENG/92D-23

Abstract

The thesis research investigated design recovery as a means of populating a reuse library.
The targeted library was part of the Automatic Programming Technologies for Avionics Systems
(APTAS). APTAS uses a knowledge base of forms, to present questions to a user, and rules, to
select the forms to present and choose existing library modules to use in composing a new system.
The approach appiied the reengineering model developed by Eric Byrne to accomplish planning for
the project, expanded the renovation phase of this model to cover the actual design recovery, and

applied the expanded model to populating the library.

Usir.g the model in the project showed that design recovery is feasible in populating the
library. However, if the recovered design could not be used directly, it could be used as a guide
in developing new components. Additionally, certain modules make better candidates than others.
Ideal candidates are self-contained in that they receive a value, perform a computation, and return
a value. Once the module starts performing too many operations, expertise is required in the

module behavior in order to separate the component for reuse.

D.:SIGN RECOVERY FOR SOFTWARE LIBRARY POPULATION

1. Introduction

1.1 Background

Developing any system requires defining what the system is to accomplish, identifying re-
sources required to build the system, and putting the resources together to produce the desired
product. Once the system is in existence, it is used for the intended purpose, except during periods
when the system requires maintenance. The waterfall model, shown in Figure 1.1, represents all
of these processes as phases in the lifecycle of a software system. The analysis phase defines the
user’s requirements. Actions in this phase provide a detailed description of the problem that needs
to be solved; documents information flow and structure in the current environment; and describes
hardware, software and human interfaces as they will exist (16). The product of this phase is
a document, called the program specification, listing all of the requirements the system is to ac-
complish. Using this specification as input, the design phase translates each requirement into a
software representation (16). Additionally, required system resources are identified. The output of
this phase is the design document outlining the necessary software modules and their functionality.
At the code phase, programmers take the design document and convert each module into a form
that can be executed on the computer system. During test, system behavior is compared with the
requirements to ensure there is a correct correspondence. Once the system leaves the test phase, it

passes to the customer and is used ard maintained as necessary.

Developing software using the waterfall model has created problems. General Randolph, as

quoted in (2), summed up the nature of the problem with software development when he said

“We've a perfect record...: we've never made one on time yet”.

In his studies of software development problems, Brooks (6) refers to work by Charles Portman,
manager of ICL’s Software Division. Portman initially found his nrogramming t<ains were taking

twice as long as expected. When this slippage pattern appeared, e asked his teams to keep careful

1-1

Program Specification

Analysis [T\
Program Design
Design _]

Structured Program

Tested Program

Test j

Maintain

Figure 1.1. Classical Software Lifecycle Model

logs of time usage and found the teams were only able to utilize 50% of the work week as actual
programming and debugging time. Machine downtime, meetings, paperwork, company business,

and higher-priority, short, unrelated jobs were among the culprits using the remainder of the teams’

time.

There is another important side effect that results from spending too much time developing
software. Brooks nctes that often the product is obsolete upon (or before) completion. He refers

to this as one of the woes of developing software.

Executable specifications and automatic program generation are two ideas that may provide
a means to reduce the time involved in the development of software as compared with using the
classical software lifecycle modael. When these ideas are combined there are benefits for the entire

software development process.

1.1.1 FErecutable Specificatios:s As shown in Figure 1.1, the software development process
has many phases, and usually the same people are not involved in cach phase. The only expertise
guaranteed to pass between phases is the document produced at the end of the phase. If the

document is not complete, there is a possibility of introducing errors. Additicnally, once the

User's Needs Abstraction
—> Analysis

Program Program

(Generation

Figure 1.2. Automatic Program Generation

analysis phase is complete, the customer is usually not involved again until the end of the testing
phase. This means errors or misunderstandings in the original specification are propagated through
the development and not discovered until testing or operation. Errors not found until this phase
are more costly to fix. Putting the specification into a form that could be executed on a computer
for the customer’s benefit would allow adjusting the specification to better represent the customer’s
needs. This fine tuning reduces the number of errors passed through the following phase by catching
problems early. Also, the customer can see the system in action and is assured that the right system

is being built.

1.1.2 Automaiic Program Generation Lewis {12) describes a code generator, as it relates
to automatic program generation, as a system that “...takes a programmer's inputs in the form
of some abstraction, design, or direct interaction with the system and writes out 2 source program
<hat implements the details of the application.” What he sees as inputs to the system are ab-
stractions that hide the coding details. This distinguishes code generators fiom tools that simply
orovide language templates. Using this definition allows simplification of the software development
mode] to the representation presented in Figure 1.2. The number of phases involved in the soft-
ware development lifecycie has been reduced leading to increased programmer productivity, fewer
translation errors, and no direct maintenance on the code. Programmer productivity increases
since the coding phase has Leen eliminated. Also, more products can be produced since it is only
necessary to develop requirements. There are fewer errors since there are fewer people and fewer
phases involved. With automatic program generation, there is no need to do maintenance on the

code sirce the code is generated from the analysis abstractions. The abstractions are adjusted and

new code is generated.

1.1.3 Combining Executable Specifications and Automatic Program Generation Executable
specifications add value to the automatic generation of code. As inentioned above, finding errors
early makes code production more cost effective. Being able to execute the specification gives the
customer the opportunity to cvaluate system operation before code is generated. Also, executable
specifications combined with automatic code generation aids maintenance. In typical software
maintenance environments, the documentation for the software does not match the functionality
of the software. This makes it necessary to analyze the software to gain an understanding of its
functionality before performing any maintenance. This activity must be performed over and over
each time there is a need to change the software. This is very labor intensive, and each time a change
is made the documentation bears less resemblance to the code. Using the combined methods, it
is not necessary to do maintenance on the software. The specification can be changed and the
new code can be generated. Now the documentation always reflects the status of the code. As
mentioned by Arnold (3), if the intermediate form of the specification is available for manipulation,
additional documentation can be generated. These could be items such as flow charts, dataflow

diagrams, or user’s manuals.

The next section describes a system that has been developed to experiment with combining

the ideas of executable specifications and automatic program generation in a limited domain.

1.2 Automatic Programming Technologies for Avionics Software (APTAS)

APTAS is a system owned by Wright Laboratory which will be used as a proof-of-concept for
execatable specifications and automatic program generation for avionics systems. APTAS operation
begins by taking in a specification for an avionics tracking system. The system selects software
modules from an internal library based on rules in the system knowledge base. Once the modules
have been selected, APTAS can simulate the behavior of the tracking system under development
so the specification of the system can be tuned. After the desired behavior is represented, APTAS

can gencrate the Ada code for the system.

APTAS comy.oses modules from its library to develop the new system. However, the current

APTAS library is not extensive. To get the full benefit of APTAS, the internal library must contain

a large selection of tracking modules. In the past Wright Laboratoiy coded modules on an as-needed

act

%

basis. Presently they have modules in many programming languages. Transforming the modules
will be labor intensive. so automation of the transfcrmation will be looked at to speed the task in

this and similar situations.

This thesis looks at design recovery as a means for transforming existing modules to fill
the librai,. Byrne (7) has developed a new reengineering model that outlines many of the issues
involved in accompiishing the task. Both design recovery and Byrne’s model are described in detail

in Chapter 2.

1.3 Problem Statement

The work that needs 1o be accomplished to populate the library can be divided iuto four

areas.

o Identify tue intermediate language format used in the APTAS library. A template
will be designed identifying important parameters and specifications for library
modules.

o Characterize sample modules that need to be placed into the present library. This
will enta’] identifying parameters required by the modules, identifying values that
are returned by the modules, learning how to invoke the modules, and also identi-
fying the modules’ functionality.

s Outline a procedure that will take the module behavior and map it into the format
of the template. This is also a point in the reengineering process to consider
redesign of the existing modules. Ideally the mapping will produce behavior rules
that APTAS can use as part of its module selection criteria.

o Implement the mapping function and test the newly derived APTAS functionality
with the behavior of the original moduie. It is hoped that the conversion procedure
can be fully automated.

1.4 Assumptions

Developing a mapping process is dependent upon being able to characterize the present AP-
TAS knowledge base and being able to develop a template in the intermediate language accepted

by APTAS. It will also be necessary to characterize modules that are to be converted. This involves

capturing usage information and parameter data for each module.

Captured Restructured
Design Design
Existing New

Code Code

Figure 1.7, Yesign Recovery for Software Library Population

1.& Scope

The research proposed here will be limited to detailing the renovation phase of Byrne’s model

and applying the model to the reengineering of selected tracking madules.

1.6 Summary of Current Knowledge

This thesis effort researches the possibility of using design recovery as a method for software
library population. This vrocess is presented in Figure 1.3. Beginning with existing source code, a
method will be developed 1o capture and reconstruct a design representation. Two important issues
in design recovery are determining design decisions and representing the design. Design decisions
can be used to restructure the recovered design. This can be done to increase understandability,
efficiency, and maintainability of the software and the design. A good representation choice will also
aid in understanding and make conversion to the new system easier. Also considered at this point
is adding features to the recovered design. Once the design is finalized, it must be converted to the
new form. Since APTAS will generate new systems utilizing its software library, it is necessary to

produce a new module in a format accepted by APTAS.

This research will not be concerned with changing the functionality of the existing software,
so the design will not be restructured. It seeks to capture the design as-is and represent it for use
in APTAS. Since the final form is for an existing system, the final representation icsues have been
decided. However, the actual mapping process must be addressed. These concepts will be covered

in the literature review.

1-6

To ensure that all facets of the work aie covered, Byrne's (7) reengineering process model will
be used. Byrne’s paper outlines all of the phases required for a reengineering project. It details the
analysis and planning phase and gives good criteria for determining the need for a reengineering

efiort. A summary of his model is presented in Section 2.2.1.

1.7 Approach/Methodology

The thesis effort will begin with a survey of the literature to uncover present design recovery,
automatic program gencration, and reuse efforts. This will be followea by studying the intermediate
library language to understand its structure and requirements. A general study of the C language
will be necessary to become familiar with the modules that will be converted. Once this is complete,

a mapping process will be developed, implemented, and tested.

1.8 Materials and Equipment

A complete APTAS system is required to accomr" .h this research. Additionally, access to

the internal intermediate language formats and specifications are critical.

1.8 Sequence of Presentation

The next chapter presents a review of current work related to this thesis effort. Chapter 3
outlines the methodology that will be used to solve the problem outlined above. Chapter 4 de-
tails implementation of tkz methodclogy and Chapter 5 summarizes the results of the research.

Chapter 5 also gives recommendations for additional work in the research area.

1.7

II. Literature Review

2.1 Introduction

The research presented in this thesis looks at software design recovery for library population.
To better understand what is being proposed, it is necessary to understand how this fits into the
broader scheme. At the outermost level of this research effort is a system designed to automatically

generate other syc.ems (see Figure 2.1). It accomplishes the generation by taking in a specification

Automatic Component
Specification System Compilation New
Generation System
reseseeee-
1}
Component
ibrary

Present System \

..

Thesis Effort

Recovered

Components
Existing
Software Language 1
Design
Recovery
Language 2 y
Reengineering
Language 3

Figure 2.1. Overall Thesis Effort

and using its iiternal composition rules to select available modules from its internal component
library that will implement the specification. Once the correct collection of components is selected,

the automatic system generator can create the new system. In its present configuration, the top

2-1

level system does not have many components in the internal library. This limits the types of new

systems that can be produced.

Prior to APTAS, systems were constructed using the specification and manual refinement
until a new coded system existed. As a result, there are existing software components but in many
forms and languages. This research focused on reengineering to make existing modules available for
the internal library of the top-level system. The reengineering effort examined the components as
they existed with the intent of capturing their design and putting the design into a form accessible
by the automatic system generator. Automatic generation of effective systems requires a large
collection of library modules. Automation of the reengineering task will make best use of the

automatic system generator.

This review presents current research efforts on reengineering and details one specific pro-
posal by Byrne for modeling a reengineering project. It also covers automatic system generation
with emphasis on using library components. One specific top-level system, called APTAS, and its
relationship to automatic system generation and library population is defined as this system will

be used as the testbed for the research. Finally, the direction of the thesis is given.

2.2 Reengineering

In any area of study confusion results when everyone has their own terms. For the field to
communicate and grow, it is necessary to come up with a common set of definitions. Chikofsky

and Cross (9:13-17) have baselined the field by defining the key terms associated with software

reengineering. They begin with the model of the software lifecycle shown in Figure 2.2 and give

the following definitions:

forward engineering the traditional process of moving fromn high-level abstractions
and logical, implementation-independent designs to the physical implementation
of a system.

reverse engineering the process of analyzing a subject system to identify the system’s
components and their interrelationships and to create representations of the system
in another form or at a higher level of abstraction.

redocumentation is a subset of reverse engineering that creates or revises a
semantically equival'nt representation within the same relative abstraction
level. The resulting torms of representation are usually considered alternate

REQUIREMENTS DESIGN IMPLEMENTATION

Forward Forward
—_—t e ——— | _Engineering | __ ____ |__Engineering | _ _ ____ .
Reverse Reverse
S e —— ‘M. et Engineering | _ __ ___] —
Desig‘n ——— - - - e o ﬂ Dcsis‘n
Recovery Recovery
r ------- o @ o = o . e - -,
Reengineering Reengineering
Restructuring Restructuring Redocumentation,

Restruciuring
Figure 2.2. Relationship Between Terms {9)

views (e.g., daiaflow, data structure, and control flow) intended for a human
audience.

design recovery is a subset of reverse engineering in which domain knowledge,
external information, and deduction or fuzzy reasoning are added to the obser-
vations of the subject system to identify meaningful higher level abstractions
beyond those obtained directly by examining the system itself.

restructuring the transformation from one representation form to another at the same
relative abstraction level, while preserving the subject system’s external behavior
(functionality and semantics).

reengineering also known as both renovation and reclamation, is the examination and
alteration of a subject system to reconstitute it in a new form and the subsequent
implementation of the new form.

Throughout the remainder of this thesis use of these terms will be with the meanings given here.

2.2.1 Byrne’s Model Byrne’s work studies the process of software reengineering. His goal
is to determine how a software reengineering project can be accomplished. He poses two questions
that must be answered for any reengineering project: what information must be produced and when
can this information be produced. The answers to these questions determine the information used

by the process and determines the tasks and iheir relationships within the process. Most of the

present work in reengineering emphasizes the technical aspects that must be resolved (7). It turns

out that technical aspects are only one key to a successful project. Byrne has identified project
management, technical work, and support as the areas that control the entire reengineering process.

As shown in Figure 2.3, these processes are interwoven and must be handled together to make a

Figure 2.3. Control Area Relationships (1)

successful project. One other issue Byrne addresses is the need to specify the reengineering process
unequivocally. He chose the specification language Z to overcome the problems that result when
English is used. The following sections give an introduction to Z and present a general overview
of Byrne’s mode]. Also covered are the tasks for the three control areas previously mentioned and

the mapping of these tasks to the phases of a reengineering project.

2.2.1.1 Introduction to Z Z is a language fo: formally specifying computer systems.

It uses the mathematica’ concepts of set theory and logic. For a detailed discussion, see (18). What

2-4

is presented here is a few of the basics to allow an understanding of Byrne's model'. The basic

feature of Z is the schema, and it has the following form.

__schema — name

signature

predicate

The schema-name allows the schema to be included within other scl.emas. The signature
identifies variable names and their types. The predicate describes relationships among the variables.
These schemas are used to describe states, events and observations. States are mathematical
structures which model a system, events are occurrences of interest, and observations are variables

that can be examined before and after an event. Here are two exainple schemas.

. increment

counter

. Acounter
value, limit : N L

- value' = value + 1
value < limat
{init’ = limit

The schema on the left represents a counter state space. It says that there are two variables
associated with the counter, its value and its limit, and these variables are natural numbers N.
The predicate says the value of the counter must always be less than or equal to the limit. The
increment schema represents an event that changes the counter. Note how it uses the name of the
schema on the left and the use of A to signify that it changes the schema. Here the predicate shows
that the new counter value value' is the result of adding one to the present counter value value.

The predicate also shows that there is no change in limit.

2.2.1.2 Model Overview By defining a model for the process of reengineering, Byrne
clarifies the properties of information objects and their interrelationships without trying to capture

the variety of documents involved in the process. At this level people can concentrate on why there

!See Appendix C for a complete list of the Z symbols used in this research

MANAGEMENT
Define Approach TECHNICAL

Estimation

Define Organizational Structure
Define Project Procedures and Standards
Identify Resources

Plan System Transitien
Scheduling

1dentify Tools

Define Acceptance Criteria
Conflict Resolution

Project Authorization
Personnel Management

Determine Motivations and Objectives
Analyze Environments
Coilect Inventory

Test Planning

Target System Testing
Documentation Planning
Create Documentation
Source Code Analysis
Design Recovery
Information Inapection
Redesign
Reimplementation
Analyze New Source Code
SUPPORT Accaptance Testing

System Transition

Configuration Management
Quality Assurance
Project Tracking

Figure 2.4. Control Areas and Interest Items

must be a reengineering effort, what is expected of the effort, and other high-level issues. The list
of tasks he defines as needing to be addressed for each of the reengineering process control areas is

given in Figure 2.4.

2.2.1.3 Process Phases The reengineering phases identified by Byrne associate the
interest items from Figure 2.4 with points in the reengineering process as shown in Figure 2.5. Each
interest item is marked with S, M, or T to indicate whether it comes from the Support, Management,
or Technical, respectively, control area. These phases cover 24 of the 30 items. Miscellaneous tasks
encompass the six remaining items. These are the things that don’t fit into any one phase or must

be carried on throughout the project.?

e configuration management (S)
e quality assurance (5)

e process tracking (S}

project authorization (M)
e personnel management (M)

e conflict resolution (M)

“See Byrne (7) fo1 a complete description of the reengineering model.

ANALYSIS AND PLANNING

Determine Motivations and Objectives (T)
Analyze Environments (T)

Collect inventory (T)

Define Approach (M)

Documentation Planning (T)

Plan System Transition {M)

Deiine Acceptance Criteria (M)

Define Project Procedures and Ssandards (M)
Identify Resources (M)

Identify Toola (M)

Test Planning (T)

Estimation (M) REDOCUMENTATION
Define Organizational Structure (M) 3o Analyze Now Source Code (T)
Scheduling {M) Create Documentation (T)

T

RENOVATION PHASE
Source Code Anslysis (T)
Design ftecovery (T)

« Information Inspection (T)
Redesign (T) .
Reimplementation (T')

A

VERIFICATION PHASE ACCEPTANCE AND SYSTEM TRANSITION

Acceptance Testing (T)
System Transition (T)

Figure 2.5. Reengineering Process Phases

2-7

A look at the Z specification for part of the analysis and planning phase gives more insight into the
power of a formal specification language. Byrne takes the analysis and planning phase and details
it in Z. As Figure 2.5 shows, this phase has 14 associated tasks. The details of each task look
very similar in Z. So detailing any one task requires specifying the domain of the task, specifying
the variables required to model the task, and specifying the operations available for that task.

Begiuning with this definition

MOTIVATION = set of all possible reengineering motivations
OBJECTIV E £ set of all possible reengineeiing objectives

Byrne develops the following schema called the project definition that tracks ard labels all reasons

and goals for the reengineering project.

DEFINITION
reasons : LABEL +» MOTIVATION
goals: LABEL ~ OBJECTIVE

The initial value for the project is given in the schema

—INIT _DEFINITION
DEFINITION

reasons = 0

goals =

The operations identified on the DEFINITION schema are

Add-reason Add-goal
Delete-reason Delete-goal
Get-reason Get-goal
List-reasons List-goals

_

and they each represent changes and operations on the state of DEFINITION. The schemas below
show the specification for these operations with respect to MOTIVATIONS. The specification for

2-8

— |

OBJECTIVE is similar. There are several new symbols in these definitions: ¥ signals a variable

used for input; ! signals a variable used for output; and ‘ signals the new value of the given variable.

__ Add — reason

__Delete — reason

ADEFINITION

ADEFINITION
m? : MOTIV ATION _

17: LABEL
17 : LABEL

1? ¢ domreasons
1? ¢ domreasons
reasons’ = {I?} ¢ reasons
reasons’ = reasons U {I7 = m?}

goals' = goals

goals' = goals

~Get — reason
EDEFINITION
7. LABEL

m!: MOT]VATION

m! = reasons(l?)

— List — reasons
EDEFINITION

17. LABEL

m: P{LABEL x MOTIV ATION}

m= {l: LABEL, m: MOTIVATION | reasons(l) = m}

The other tasks of the analysis and planning phase were defined similarly. The first step taken
was to defire the domain and the variables. The second step identified the various operations that

were required. And the final step specified the operations.

2.2.2 Software Design Recovery Two essential steps in recovering a design are understand-
ing what went into a design and representing this information. This section ccvers work that has

been done in design recovery.

2.2.2.1 Categorizing Design Decisions Rugaber, Ornburn, and LeBlanc (17) derived

a method of characterizing design decisions by aralyzing programming constructs. They note that

during program development, many decisions are made. Some address the problem dosaain and
how it should be viewed and modeled, while others address constraints imposed by the solution

space, including the target machine and language. The categories they give are listed below.

composition and decomposition
encapsulation and interleaving
geueralization and specialization
representation

. data and procedures

i function and relation

They examine a FORTRAN program and come up with the following examples as indications of
design decigions.
interleaving program fragments to accomplish two calculations in a single program
section.

representing structured control flow in a language that does not support them
(e.g., Repeat-Uniil, If-Then, If-Thew.-Else, and Case).

interleaving by code sharing the Else part of and If-Then-Else.

data interleaving by reusing variable names for iwo different purposes.
generalizing interpolation schemes

variable introduction to save on repeated computation.

generalizing interval computation

representing structured control flow

program architecture

They conclude that representing design decisions will be a major factor in effective reuse. The
ideal representation must be easy to construct during development and reconstruct during reverse
engineering. Also, it must be formal enough to manipulate automatically and must be capable of

representing all levels of design decisions.

2.2.2.2 Calling Hierarchy Another method used for design recovery begins by de-
termining variable declarations and the respective modules (10). The next step is to find the
lowest-levei modules in a calling hierarchy. These are the modules that do not call other madules.

This is repeated for each level until a tree-like structure has been developed representing the calling

2-10

structure of the design. Lockheed has used this method to gain code understanding before group-
ing code seginents into Ada-like structures. An additional use they found for this information is

identification of components for pornlation of a software repository.

2.8 Automatic Sysiemi Generaiion

Present methods for generating systems have centered on two methods: generation of systems
by composing components and generation of templates from a specification. Composing from
comporents requires having a library of modules available aud having a process for searching and
selecting components. Tlec template method yields a skeleton with coding details that must be

completed hy hand. T'wo applications are presented here that make use of these methods.

2.8.1 The Draco Approach Neighbors (15) researched automatic programming using an
experimental prototyping system called Draco. It uses a domain language to describe programs in
each different problem area. A probiem area is considered a domain. Objects and operations repre-
sent analysis in-ormation about a problem domain. Analysis information states what is imporiant
to medel in the proble:n. This type information is reused. Alsc objects and operations from one
domnain language czn be modeled by objects and operations frory other domain languages. This
relationship represents different design possibilities. Design information states how the problem is
to be modeled. Design is reused each time one of the design possibilities is used. At some level of

development an executable language is needed. This is the bottom of the modeling hierarchy.

The traditional development cycle started with user and system analyst interaction to specify
what the system was to do. This specification was passed to the designer to who determined how
the system would accompiish the specified behavior. Draco adds two new human roles. A domain
2nalyst examines needs and requirements of similar systems (the samc problem area). This is passed
to a domain designer who specifies different implementations for the various objects and operations
in terms of domains already known to Draco. At this point in the development, the sysiem analyst
and user interact considering existing dornains (analysis reuse). At the next stage, the designer
interacts with Draco to choose a particular implementation (design reuse). The basis of the Draco

work ic the use of domain analysis to produce domain languages which may be transformed for

optimization purposes and implemented by software components, each of which contains multiple

refinements each of which make implementation decisions by restating the problem in other domain

languages (15:565-566).

2.3.2 Issues Biggerstafl and Richter have researched the technologies that are available to
address reuse. The two major areas they came up with are composition and generation. These
categories were determined from the nature of the reused items. The composition group is distin-
guished by having atomic units that are ideally unchanged in each new application. Their example
of this type of reuse is the Unix pipe that allows customizing commands by taking the output of one
command and sending it through another. Their generation group is characterized by two types
of patterns: code patterns and transformation patterns. Examples of these types of reuse are ar
plication generators and transformation systems. The former reuses its own internal code pattei...
across the generation of many systems. The latter reuses internal rules during the transformation
process. In both cases it is the process that is being reused. Their assessment of reuse is that there
are dilemmas that require trade offs, there are operational issues to address, and there is the issue

of the level of reuse.
Within the dilemmas trade offs can be seen from many perspertives:

applicability versus payoff Technologies that are very general have a much lower
payoff than systeme that are narrowly focused.

componeut size versus reuse potential As a component grows, the payoff from
reuse increases. However, the component becomes more specialized decreasing
its potential for reuse.

cost of library population Usually projects are budgeted to meet short-term goals.
Large initial investment for potential long-term payoffs is not seen as a viable
alternative.

The operational issues they identify are finding, understanding, modifying, and composing
components. Finding components includes finding exact matches as well as similar components.
Without an exact match, the similar components can be used in developing a new component.
Understanding a component i¢ important to using it correctly and even more important if the
component must be modified. Medifying components allows the system to evolve. They identified
composing components as the most challenging because the components must be represented as

distinct entities with specific characteristics and at the same time as a compositicn with a different

characteristic.

The leve! of reuse can either be code or design. Code reuse has been successful in numerical
computation routines. However these areas are narrow domains that are well-understcod. These
domains are alsc not rapidly changing. Design reuse is seen as an alternative, but it requires further
study. If designs are represented in programming languages the designs become too specific. If they

are represented very generally, they cannot be processed in machine form.

After their research they speculate that there will be very little immediate progress because
of the initial investment required. Also additicnal research is required tu overcome the design

representation issues.

2.4 APTAS

As stated eatlier, the research proposed here will make library modules available for a system
that automatically generates programs by composing components. Figure 2.6 is an APTAS system
diagram which emphasizes the interfaces presented to the user during development of an application
(referred to in APTAS as a project). An engineer using the system begins defining a tracking
application’s specification in the tazonomy summary window. It contains of a set of text lines,
each representing a form. The forms present questions using the dynamic forms interface. A form
takes numeric, text string, exclusive choice, or checklist information. By answering the presented
questions, the specification is developed. The number of entries appearing in the summary window
increases, reflecting the effects form selections have had in pruning the taxcnomy tree toward a

specific architecture.

When the forms are complete, they are submitted to the architecture generator. The generated
architecture is presented in the graphical user interface (GUI). It presents a graphical representation
of the generated architecture using components that can be edited to provide the specification’s
details before code synthesis takes place. There are four types of icons used in the GUI: a box
represents a module; a circle represents the communications interface of a module; a diamond
represents the interface function of a module; and a triangle represents a parameter of a module.
There are also lines representing relations between the modules. A sample module is presented in

Figure 2.7.

Dynamic
Forma
Interface

Forms
Generator

and
Cuding Design

Ade
Program

Tracking Txxonomy

Knowledge Base

Graphical

User
Interface

Synthesis
Engine

Run-Time
Display

Ada
‘Translator

Figure 2.6. APTAS Organizational Diagram (13)

UT:UPDATE_TRACKS

DECQYS :BOOL
PLATFORM:éﬁATF g
FALSE_ALARM PROBABILITY:REAL

TARGET_DENSITY: &GETDENJITYTYDE
REDUCEDDELTA_FACTORS:RECORD[FEAL; REAL] TARGET PROBABILIT@OF DETECTION:REAL

TERMINATION THRESHOLDS : RECORD[INI INT]

-~

IUT:INITIATE TENTATIVE_TRACKS

' "",:

{

Jane.

D E(TENTATIVE_T0_REGJLAR_THRESHOLD:INT

I

INITIAL GATE_DELTAS:RECORD [REAL; REAL]

TARGET TRAJECTCRY: 4§hGEWTRAJBC”0RYTYP”

H
“
l.v

DATABASE

PbCA PRO&ESS GATE; CONTACT ASbOCIATION

TERMINATED REG_ TégéK SAVE_LIMIT:INT

TERMINATED_TENT_T%CK_SAVE_LIMIT:INT

INCREASED_DELTA_FACTORS:RECORD [REAL, REAL]

:GENERATE_SEARCH_GATES

PROCESS<i:>N_FRAME

2-15

Vigure 2.7. GUI Representation of a Module

When the specification has been completed in the graphical user interface, an implementation
may be generated in CinL by pushing the Synihesize button on the APTAS system control panel.
CIpL is a high level system design language developed at the Lockheed Software Technology Center
(LSTC) as part of LSTC’s Software Synthesis project. Once the C!DL code has been generated, an
equivalent Ada implementation can be generated by pushing the Trauslate button on the APTAS
system control panel. The behavicr of the generated CipL and Ada tracker implementations may be
tested by invoking the Erecute button’s menu from the APTAS system control panel, then selecting
either Run CIDL or Ezecule Ada. When a selection is made, the code will begin executing, and a
window will be displayed showing the output of the tracker. The output is simultaneously written
to files for future analysis and/or utilization of the Run-Time Display program. The data generated
from the executing tracker may be presented in a visual display (shown in Figure 2.8). If the user
is not satisfied with the test results, he/she may return to the GUI or tazonomy summary window
to modify the specification and repeat the synthesis and test prccesses. The tracking tazonomy and
coding design knowledge base is used to support multiple phases of the specification and synthesis

process.

2,5 APTAS Library Population

Extending the tracking taxonomy and coding knowledge base entails writing C1p1 *mplemen-
tations of primitive modules, rules which determine when the primitive is appropriate for a given
application, and the questions to present to the user which will elicit the information needed to
evaluate those rules. The CipL module construct, used to define the reusable primitive software
components of the APTAS knowledge base, defines a new type which encapsulates a set of types,
declarations, and functions. A module type declaration includes up to four sections: parameters,
interface, structure, and behavior. Parameters provide the generic character of modules. The exact
properties of each instantiation of the module type depend on the parameter values provided when
the instance was created. A sample module is given in Figure 2.9. The interface describes which
components of the module are accessible outside the module. The structure section contains the
local declarations. The behiavior section describes the processing which takes place each time the
module type is instantiated. Instantiation is performed by a call to the module creation function

which is generated when the module type is compiled. Adding a primitive to the taxonomy requires

2-16

+50

. 4 0000

0001 138,05

0000 14.72
0001 134.68

G000 133.02
goot 139,02

000 143.%
ol G001 143.56

+ 000 148,30
v ot 00t 150.66

+ 000 153,18
1+ Lot 162.00

198,24
goot 174,15

0000 163.47
conr 196,21

0060 168.86
goot 190.2t

6000 174.%
oot 190,21

0000 180.3
oot 190,21

0o 18631
oot 190.21

00 1324
000t 190,20

000 198,76
gogt 190,21

0000 205.24
oo 1802t

Figure 2.8. Run-Time Display

2-17

2.0

6.20
%622

.64
.M

3.09
23,08

30,55
ny

2.0
3649

1.5
41.38

.9
4.6

36,50
4.8

BN
.8

39.68
40.87

41,25
49.87

2.8
48.87

44,45
48.67

46,08
8.8

apty
expocted

expected
exgected

exrected
exgected

exgected
eapty

expacted
onpty

expected
eapty

enpty
eIpty

sty
oapty

axpocted
sipty

exnected
eapty

expected
eapty

expected
eapty

gxpected
eupty

apty
eiply

egular
1 Tentative

2 Regular
0 Tentative
0 Regular
0 Regular
0 Reguiar
0 Regular
0 Regular
1 Regular
0 Regular
2 Regular
0 Regular
3 Reguiar
1 Reqular
4 Regular
2 Regular
4 Terninates
0 Ragular
4 Torninated
0 Regular
4 Tersinated
0 Reqular
) Terainated
0 Regular
4 Terninated
0 Reqular
4 Terainated
1 Regular

q Terninated

module Sensor_Model
Parameters

scusor: SensorType;

targetspecs: sequence(GenericTargetSpec);

perturbation_factor: real;

iterations: int;

scan_frame_out: event(GenericScanFrame)
Structure

loop.counter: store(int);

sonsorotime: store(real);
Behavior

loopcounter := Q;

sensor.time := 0.0;

EandModule;

Figure 2.9. Sample CipL Module

adding the appropriate forms information and module selection criteria. These steps are performed
by first determining where the new primitive module fits into the existing taxonomy, determining
the conditions under which it should be selected for a particular application, and adding the appro-
priate entry to the list of available modules. The next step is to determine the appropriate forms
and/or questions for existing forms required to solicit the information needed to evaluate those

conditions.

2.6 Review Summary

This chapter has presented current work in the field of design recovery and automatic program
generation. There was also a summary of Byrne'’s reengineering model. This research will use
the model as a framework to capture all of the issues that need to be addressed in outlining a
reengineering project. The methods of design recovery and automatic program generation will be

examined for a solution to the problem of populating the APTAS library.

2-18

III. Methodology

This chapter outlines the two-step approach selected to solve the library population problem.
The first step entails using Byrne’s reengineering model to guide the project. As discussed earlier, a
reengineering project involves technical issues as well as support and management issues. Byrne’s
model was chosen because it deals with all of these issues. With his complete description of
the analysis and planning phase, Byrne has a good foundation for determining the need for a
reengineering effort and the resources that will be required to complete the project. Additionally,
the amount of detail in the model will ensure that all issues are addressed and tracked. A major part
of the first step elaborated the renovation phase of the reengineering model, in Byrne's notation,
since it was not developed in detail by Byrne. The second step was to reengineer the existing
software in the new form. This step applied the concepts of the first step serving as a proof-of-
concept for the model and for using design recovery as a solution to the library population problem.
The approach taken in this chapter is to demonstrate how to use Byrne's model by applying his
specification of the analysis and planning phase to the library problem, to develop the renovation

phase, aud finally to apply the model to the library problem.

5.1 Analysis and Planning Phase

Byrne's original work in this phase was done using Z. This Janguage is based on formal logic
and set theory. With this very mathematical foundation, it reduces the am»iguity in the resulting
model. This research will continue using Z to maintain a low level of amktiguity. An added benefit
will be easier enactment of the model should that become necessary. REFINE™ is an example of
a programming language that could be used to enact this model since it to is based on set theory

and formal logic.

The previously defined Analysis and Planning phase is shown in Figure 3.1. The tasks have

- been identified by Byrne and represent management (M), technical (T), or support (S) issues. Each
task has associated characteristics that must be tracked. To follow these characteristics operations
are identified for each task. The characteristics are represented as a set of partial functions. This
means there is a mapping from a name for a characteristic and the associated entry for the particular

characteristic. Since all of these tasks are represented as sets, they have common operations that

3-1

ANALYSIS AND PLANNING

Determine Motivations and Objectives (T)
Analyze Environments (T)

Collect Inventory (1)

Define Approach (M)

Docurmentation Planning (T)

Plan System Transition (M)

Define Acceptance Criteria (M)

Define Project Procedures and Standards (M)
Identify Resources (M)

Identify Touls (M)

Test Planning (T)

Estimation (M)

Define Organizational Structure (M)
Scheduling (M)

Figure 3.1. Analysis and Planning Phase

can be performed on them. These operations are add an item to the set, delete an item from the
set, list the items in the set, and get an item from the set for modification. Here is an example

using the task DDetermine Motivations and Objectives as it applies problem of library population.

This task tracks all of the motivations and objectives for a project. The Z schemas were
identified in 2.2.1.3 to add, delete, get, and Jist all of the reasons and goals for any project. This
particular project begins with the DEFINITION schema showing reasons and goals as empty sets.

DEFINITION

motivations(T) : @
objectives(T) : @

The T signifies that these are technical tasks as previously defined. As motivations and
objectives are identified for the project, the add function is applied to each of these tasks to

document this information. The resulting schema for the library problem is shown here.

~~DEFINITION

motivations(T) : {

{motl +- (therc are existing routines that implement functions that are also required in the new system)),
(moi2 v+ (the new system does not have sufficient routines to be effective}),
(mot3 — (the existing routines are implemented in many progranuning languages)),
(mot4 + (the existing routines are spread over many computers)),
{mot5 — (the existing routines are ad hoc; appear to be only home grown utilities)),
{mot6 » (there is incentive to Lake advantage of axisting routines in a new technology that generates
Ada code from tracking algorithms))
}
objectives(T) : {
(0bj1 -+ (to make additional routines available for automatic system generation)),
(0bj2 v+ (to improve suftware system maintainability)),
(0dj3 =+ (to convert the existing library to a single language that can be used to generate Ada)),

(objd »~ (to port the existing software to a single system))

Application of the Z-defined operators to the other tasks is similar. As pointed out in (8), a
major output of the analysis part of this phase is the current status of the system. The planning
part of this phase outlined the management issues including identifying the scope of the work, the
required resources, milestones, and establishing a schedule. The physical outputs of this phase are
an overall project plan, « plan for the other phases, and the existing documentation. The

renovation phase is one of the phases that follows analysis and planr

3.2 System Renovetion Phase

At this phase the existing system is transformed into the target sys.. ‘his transformation

follows the steps outlined in (8). There are five tasks used to accomplish these steps.

Source Code Analysis

Design Recovery

Information Inspection

Redesign

¢ Reimplementation

This section details these tasks using Z. This phase begins with some of the outputs from the

analysis and plenning phase. Additional inputs required for this phase are existing standards.

3-3

T

These standards are items required of all projects. Considering the first two tasks together forms
reengineering as defined earlier. The items produced by these tasks include a data dictionary and
a cross reference of all files and variables. Since this task is starting with source code, the initial

issue would consider capturing a software design-level representation.

3.2.1 Background In his original definition of the model, Byrne defined some global sets
that contained items used in every phase of ‘i » project. This section reviews these definitions
since they will be used as part of the description of the schemas and operations of the tasks found
in the renovation phase. Dates, names, labels, and conditions are used extensively throughout
the project. Dates are associated with task starts and stops as well as phase starts and stops for
example. Names are assigned to personnel, files, and tasks. Labels could be associated with steps
in a procedure or items in a collection. Finally, conditions are used to signify whether or not things

can occur. To keep track of all of these, four sets have been created.

DATE = set of all valid dates
NAME = set of names

LABEL = set of all labels
CONDITION = set of all conditions

Similar to the idea of sets to represent common items is the need to represent lists of charac-
teristic. For this Byrne identified the PROPERTY_LIST. It is used to track named properties and

and the associated values. He starts by identifying all properties and ail values as sets.

PROPERTY Z set of all properties
VALUE £ set of all property values

Once an item has been identified as having many properties that need to be tracked, a
property list can be created associating a collection of property names with a collection of property
values. Here PROP_NAME and PROP_LIST are specified and the initial value of the property list

is given.

PROP_NAME = set of all property names

PROP_NAME C NAME

PROP_LIST : PROP.NAME «~ VALUE

INITIALLPROP_LIST =@

For the general property list, referred to as pl below, the operations add, update, delete,

get, and list are defined. These operations can be instantiated for any list. A A before the list

name indicates that the list changes after an operation, and a = before the name indicates that the

operation does not cause a change in the list composition. The add, delete, and update operations

cause changes in the list, while the get and list do not cause changes. The general form of these

operations are given here,

pl' =plu {p? — v?}

- Add — Praperty —Update — Property
APROP_LIST APROP_LIST
p?: PROP_NAME p?: PROP_LIST
v :VALUE v?: VALUE
p? & dom pl p? € dom pl

pl' = pl @ {p? — v1}

—Delete — Property -

— List — Properties

—Ge! -- Property

APROP_LIST ZSPROP_LIST
p?: PROP p?: PROP.NAME
v
p? € dompl v ALUE
pl' = (p?} @pl p? € dompl
vl = pl(p7)

ZEPROP_LIST

list! : P{PROP_NAME x VALUE}

list! = {p: PROP_NAME; v: VALUE | pl(p) = v}

Knowing the basic definitions will aid in understanding the definitions to follow. The first

task in the renovation phase is source code analysis.

3.2.2 Source Code Analysis The input to this task is the existing software and outputs are
source code information and a data dictionary. To capture the source code information we assume
it is contained in one or more files having similar properties. Analysis proceeds from the level
of identifying files down through identifying procedures aid functions, subroutines. and variables.
The reason for following this pattern is that it structures the analysis, and it follows the pattern

used by people going from the general to the specific. The collection of files is defined as

FILES = set of all possible project files

Each file has a name that is a member of NAME previously identified. The specific names used for

files will be dencted FILE_NAME.
FILE_NAME < set of all pousible file names
FILE_NAME C NAME
Each file has many properties associated with it. For files that are to be converted to the new
system information that must be collected includes the location of the fi.», the type file (e.g. input
data or binary output), the language used in the file, the names of files that use it, the names of

other files that it uses, and the contents of the tile. Since this information should be collected on

each file a property list is setup to ensure complete collection of information for cach file.

FILE_.PROPERTIES = Predefined set of all file properties

FILE_PROPERTIES C PROP_LISTS

At this point in the reengineering effort, it is necessary to track all & the files needed by the

project. The schema PROJECT_FILES is defined to track these items.

--PROJECT_FILES .
feledist : FFILENAME
filednfo: FILE_NAME <+ PROP.LISTS

Once the files have been identified, file contents can be analyzed. Within the files items
that are expected are procedures, functions, subroutines, and variables. Each of these also have
properties associated with them. Procedures, functions, and subroutines are similar in nature and
require tracking of information such as the item name, the functionality provided by the item,
parameters required by the item, expected results, the type item, where it is declared, and where
the item is used. Variables require tracking information such as the name of the variable, its type,
where it is declared, where it is used, and its purpose. Two new collections are 1dentified to track

the names of these items

ROUTINES = set of all postible project procedures, functions, and subroutines
VARIABLES = set of all possible project variables

and property lists are established to track the associated properties.

ROUTINE_PROPERTIES = Predefined set of all routinc propertics
VARIABLE_PROPERTIES = Predefined set of alf variable properties

ROUTINE_PROPERTIES C PROP_LISTS
VARIABLE_PROPERTIES C PROP_LISTS

Finally, schemas are created to characterize the rosvtines and variables.

. PROJECT_ROUTINES
routinelist : ¥ ROUTINE_NAME
routine_info: ROUTINE_NAME ~ PROP_LISTS

—PROJECT_VARIABLES
vartable_list : FVARIABLENAME
l variable.snfo: VARIABLENAME + PROP_LISTS

The data dictionary produced in forward engineering defines all of the data used in the
system being developed. Reengineering using the above definitions recovers all of the original data

definitions from the existing system. In addition it identifies the incidental variables, procedures,

subroutines, and functions and shows all of the relationships between these items. Once the files,

routines, and variables have been identified, it is time to proceed to the next level in reengineering

the system: Design Recovery.

3.2.2 Design Recovery Tk:s task of the renovation phase adds domain knowledge and
external information as pointed out in the definition of design recovery. A major portior of this
task is providing the information that links the items identified in the previous task. This task may
provide additional information for the present property lisis or identify additional properties that
need to be included in the lists. Also identified are more of the what is being accomplizhed by the

system that is being reengineered.

Something that snrfaces at this point in the reengineering project is how to represent the
recovered design. There are many tools that can be used such as structure charts, transition
diagramns, and program description languages. It does not seem that any one tool is overall better
than any other. However, choosing a tool based or the desired oatcome does help. A hypertext
type tool (5) that allows multiple views of the same information seems to be ideal. This would allow
viewing the ‘nformatior. at a level of abstraction on par with the task at hand. The specific tool
that is vsed to capture design information is something that should be outlined in the standards of
the organization involved in the reengineering project. What is defined here is a way to track the

proaucts for a particula. project.

Individual products will have names to distinguish them {rom other items. It is also necessary
to track their location and details. Here details refers to the coinposition of the product whether

they are diagrams or descriptions. Since any project can have multiple design products, a method

is needed to track items associated with a particular project. The definitions necessory to carry

out these tasks are identified below.

DESIGN _PRODUCT I set of all 1 vssible design products
PROJECT = set of all possible reengineering projects

DESIGN_FRODUCT_NAME = set of all possible design product names
PROJECT_NAME = set of all possible project names

DESIGN.PRODUCYT _NAME C NAME
FROJECT_NAME C NAME

PROJECT.DESIGN
rproject_nanze : FPROJECT
| project_info : PROJECT « DESIGN _PRODUCT_NAME

The recovered design is now ready for passing to the next task in the renovation phase.

3.2.4 Information Irspection and Redesign In the information inspection task the details
of how to achieve the objectives are addressed. The output produced is a plan for changes to the
recovered design to get the new design. Thie plar will probably be in the form of steps that need to
be accomplished. Since the recovered design has created artifacts similar to those used in forward

engineering, the same methods could be used to plan redevelopment of the system.

The redesign task of the renovation phase allows for adjustments to the design to aid future
maintenance of the system. Also, this is the point in the project where improvements and new
requirements could be added to the system. As pointed out in (8), there is an iterative relationship
between these two tasks. Changes to the design require additional planning which may result in
additional changes to the design. Therefore, a method is needed to track all of the changes that

occur during these two tasks.

The goal of this project is to evaluate the concept of library population. Since the modules
that will be transformed are assumed to exhibit the required behavior, redesign will not play a
part in this reengineering effort. This phase of the reengineering model will not be used for this

particular project. However, if populaiion seems viable, this step must be reexzmined.

3.2.5 Reimplementation Reimplementatior is the phase that actually produces the new
system. Ouce progress has reached this phase, traditional forward engineering methods can continue
to be used. What is also necessary is a method to ensure that all required recovered behavior is
implemented. Part of this task is unit testing. With the test plans that bave been developed and
the behavior that has been noted in the previous tasks, this should make verification of proper

behavior easier.

3-9

Now that the tasks have been outlined for the library population problem, they can be put
to the task at hand. The next section looks at developing the items called for in a reengineering

project.

8.3 Library Population

At this point in the research, it is necessary to obtain actual modules that need to be trans-
formed. Appendix D lists the first module selected for the transformation. It is not too large and
is used 1n several places in the new system. All of the source code is contained in one file, however,
the module produces several output files and has several variables and subroutines. What follows

is a description of the information recovered as a result of applying the various Z definitions.

3.8.1 Source Code Analysis This task is started by identifying the files associated with this
task. Since this task will analyze the existing source code, properties are then identified to guide
the collection of information. The first level of analysis is with the files involved. These are the

properties identified with information to be gathered about each file in the collection of files.

FILE_PROPERTIES = {location, type, lunguage, uses~ files, used_in, contents}

After the specific properties are identified, this is compared with the list of related files and produces

the following schema.

3-10

~ PROJECT_FILES

Jiledist : {
EPSILON.PRN KALMAN.PL,KALMAN.PLT, P11.PRN,P22.PRN , XEST PR}
XMEAS.PRN,XNQISE.PRN,XTILDE.PRN,XTRUTH.PRN.Y EST.PRN.Y MEAS.PRN
YNOISE.PRN,YTURTH.PRN,ZXNOISE.PRN,ZY NOISE.PRN,proj1.for

}

filesinfo: {
(EPSILON.PRN — (same dircciory, output, ASCIL, N/A, N/A, data to be printed)),
(KALMAN.PL — (same direclory, output, ASCII, N/A, N/A, data to be printed)},
(KALMAN.PLT = (same directory, output, ASCII, N/A, N/A, data to be printed)),
(P11.PRN s (same directory, output, ASCII, N/A, N/A, data to be printed)),
(P22.PRN ~ (same directo"y, output, ASCLI, N/A, N/A, data to be printed)),
(XEST.PRN s (same directory, output, ASCII, N/A, N/A, daia to be printed)),
(XMEAS.PRN ~ (same directory, output, ASCII, N/A, N/A, data to be printed)),
(XNOISE.PRN — (same directory, output, ASCIL, N/A, N/A, data to be printed)),
(XTILDE.PRN ~ (same directory, output, ASCII, N/A, N/A, data to be printed)),
(XTRUTH.PRN v~ (same directory, output, ASCII, N/A, N/A, data to be printed)),
(YEST.PRN s (same directory, output, ASClI, N/A, N/A, data to be priuted)),
(YMEAS.PRN — (same directory, output, ASCII, N/A, N/A, data to be printed)),
(YNOISE.PRN w (same directary, output, ASCIIL, N/A, N/A, daia to be printed)),
(YTURTH.PRN v~ (same directory, output, ASCII, N/A, N/A, data to Lo printed)),
(ZXNOISE.PRN v (same directory, output, ASCII, N/A, N/A, data to be printed)),
(Z2YNOISE.PRN (same directory, output, ASCII, N/A, N/A, data to be printad)),
(projl.for — (same directory, 1ain routine, FORTRAN, N/A, N/A, subroutines and variables))

Source code analysis continues by looking into the various files. In this instance, the only file that
needs to be examined is proji.for since all of the other files are produced by executing this file.

‘This portion of the analysis is looking for procedures, functions, eubroutines, and variables. Again,

the first step is defining the properties that need to be collected for these iteme. Something that
comes up at this point is the hierarchical manner of declaring procedures and variables. They can
be declared in one place and used in another. Usage can be at a different level than the declaration.
This requires the usage level to also be captured. To accomplish this, usage wiil be represented as
file/procedure/. .. /procedure until the proper level is reached. The first level is represented by the
file in which usage occurs. Procedures or subroutines are added for each corresponding level. In

defining this information, scoping rules are necessary. The procedure used for scoping is to identify

3-11

routines and variables that are one level down from the routine of interest. The following properties

are identified for collection.

ROUTINE_PROPERTIES = {function, parameters, results, type, declaredin, used.in}
VARIABLE FROFERTIES = {type, declared_in, used.in, purpose}

Collecting the variable and routine information results in the following schemas.

— PROJECT_ROUTINES

routine~dist : {manin, noise, mtx: .ul, mtxadd, mtxsub, mtxzro, mtxtrp, mtxinv, idemtx}

routine.info : {
(main = (kalman filter implementaticn,N/A creates files,procedure,/projl.for,N/A)),
(noisc — (generates gaussian noise,(xinean, variaice, rndmn, n),
matrix initialized with noise,subroutine,/projl.for,/proj1.for/main)),
(mixmul — (matrix multiplication, (a,b,c,n1,n2,n3), a*bsubroutine,/projl for,/proji.for/main)),
{mtzadd s (matrix sddition, (a,b,c,n1,n2),a+b,subroutine,/projl for,/projl.for/main)),
(mizoub r~ (natrix subtraction,(a,b,c,nl ,n2),a-b,subroutine,/projl.for,/projl.for/main}),
(mtzzro » (matrix zero, (a,n1,n2), asubroutine, /projl.for,/projl.for/main}),
(mtxtrp — (matrix transpose, (a,b,1n,n2), bsubroutine,/projl.for,/projl.for/main)),
{(mtziny = (imatrix inverse, (a,ainv,b kc,is), (ainv,is) subroutine,/projl.fos,/projl.for/main)),

(tdemty v~ (identity matrix, (a,n), a,subroutine, /proj1 for,/projl.for/main))

3-12

— PROJECT_VARIABLES
variabledist : {
K, C, 11,13, 1S, IOPT, NGR, NPT, X, ¥, WX, WY, XHATN, XHATOLD,
VX, VY, 2, XHAT, 2HAT, NU, P, F, FT, R, PN, TEMP), TEMP2, Q. H, S,
HT, S1, W, WT, XTILDE, XTILDET, EPSILON, Craph, PI, Nameg

}

variableanfo: {
(I v (integer, [projl.for/main, /proji.for/taain, loop counter)),
(C == (integer, [projl.for/main, /pro}!.for/main, sample counter)),
(11 w (Integes, /proji.for/main, /projl.for/main, seed)),
(13 = (integer, /projl.for/main, /projl.tor/main, seed)),
(15 »e (intager, [projl.for/main, /projl for/main, matzix singular flag)),
(IOPT w (integer, /projl.lor/maln, /projl.for/maln, purp)),
(NG R = (integer, [projl.for/maln, {projl.for/mala, putp)),
(NPT w (luteger, /proji.for/maln, /projl.foxr/main, puip)),
(X w= (atray of reals, /projl.for/main, /projl.for/main, purp)),
(Y »= (array of reals, /proji.for/muin, /projl.fot/main, purp)).
(WX ne (artay of reals, /proji.for/maln, /projl.fot/main, purp)),
(WY = (atray of rasls, /projl.for/main, /profi.for/main, purp)),
(XHATN s (srray of teals, /projl.for/maln, [projl.for/main, purp)),
(XHATOLD w (array of 10als, /projd.for/maln, /proji.fur/main, parp)),
(VX s (artay of rasls, /projl.for maln, /projl.for/main, putp)),
(VY = (array of vesls, /projl.for/maln, /projl.forfmaln, putp)),
(Z w (sriay of reals, /projl.for/main, /proji.tor/main, purp)),
(XHAT ve (attay of reals, [projl.for/maln, [projl.for/main, purp)),
(ZHAT w (arsay of reals, /ptoji.dor/main, /pro)).for/main, purp)),
(NU = (arsay of reals, /projl.tor/maln, /projl.lor/maln, purp)),
(P oo (array of reals, /pro)i.for/mala, /pro)l.for/maln, purp)),
(F v~ (array of tesls, /pro)l.for/main, /projl.for/maln, purp)),
(FT v= (array of teals, /proji.lor/main, /projl.for/main, purp)),
(R = (&rray of veals, /projl.for/main. /proji.for/maln, purp)),
(PN v (srray of reals, /proji.tor/main, /ptojl.for/main, purp)),
(TEMP} ws (array of reals, /projl.for/main, /projl.dor/maln, temporary maitrix)),
(PEMP2 v+ (arcay of reals, [projl.forfmaln, /projldov/maln, temporary matiix)),
(Q w= (atray of reals, /ptoj).foc/main, /proji.for/main, purp)),
(H v (array of reals, /pto)i.for/maln, /prejl.for/main, purp)),
(S == (array of teals, {projl.for/main, /preji.for/main, purp)),
(H'T v (array of reals, /projl.for/main, /projl.for/maln, purp)),
(S! re (array of teals, /projl.{or/main, /projd.for/main, putp)),
(W 1= (array of reals, [projl.for/main, /projl.dor /maln, purp)),
(WT se (array of reals, [projl.for/main, /proji.for/main, purp)),
(XTILDE w (array of reals, /projd.for/main, /projl.for/maln, purp)),
(XTILRDET we (array of reals, [projl.for/main, /pro}l.for/maia, purp)),
(BPSILON v (array of raals, /projl.for/malsn, [projl.for/maln, purp)),
(Graph »+ (arsay of reals, [projl.for/main, [projl.for/main, purp)),
(Pl = (arrsy of veals, /projl.fui, maln, /projl.for/maln, purp)),
(Nameg e (array of characiers, /preil.for/main, [projl.for/main, purp))

3.8.2 Design Recovery Reaching the design recovery task, it is time to provide links between
the items identified in the previous task. The first adjustment to the PROJECT_DESIGN schema
is to give a name to the project. The nature library population brings up another problem with

naming. It is possible to refer to the iibrary as the project, or to refer to the final system as the

3-13

project, or to the individual modules as projects. Naming the modules as projects is chosen. The
present system is detailed to the extent of outlining the modules needed to make the system fully
functional. Initial additions to the system are most beneficial in these areas. In keeping with this
notion, it is reasonable to assume that conversion of individual modules will need to be tracked.
Therefore, modules will be considered as projects and given names. This name will be used to
track the module and its associated design products. Referring to company policies and standards
at this point, a decision is made about the necessary collection of design documents. Since there
are no standards presently in place for accomplishing the task at hand, design documents will be

created as needed.

The first pass through the program divides it into three parts. The first section initializes
variables and opens/creates all of the output files. Section two is a loop that does a number of
calculations based on the number of samples selected. The final section cluses all of the output
files. This shows that all of the work is accomplished in the second portion of the program. The
comments in the middle of the program depict this section as sequence of matrix operations. These
operations appear to be divided into steps of four to eight statements. This is about the best that
can be gleaned from examining the code. This is a textual description of the program. It will be

saved in an overview. The information gathered thus far is enough to translate the module into

the new system.

In this task kalman_filter has been added to ihe set of reengineering projects. The only design

product presently available is the textual description of the module.

PROJECT.DESIGN
project_name : {kalman_filter}
project_info : {(kalman_filter — kalman filter_text.overview)}

3.3.% Information Inspection and Redesign Based on the information recovered in the pre-

vious task, the plan developed here during the information inspection is as follows.

1. Develop array objects
2. Develop matrix objects
3. Develop matrix operations

4. Develop a shell with variable declarations

3-14

5. Incorporate variable initialization within the shell
6. Incorporate the second portion of the module by adding one collection of steps at a time

7. Incorporate file output

This set of steps is sent to the next task in the renovation phase. The redesign task will not be

used since the objective of this research is to capture the original functionality of the modules.

3.8.4 Reimplementation The result of applying this task is a new representution of the

existing system. The actual application of this task is discussed in detail in the next chapter.

8.4 Summary

The schemas defined in this chapter can be applied to any project that desires to populate a

software library. The chapter that follows discusses the use of these schemas in an actual project.

I1V. Implementation

4.1 Introduction

As discussed in the previous chaptar, a two-step approach was used to solve the problem. Step
one used Byrne's model to plan the project and step two was to implement the plan. Th.s chapter
discusses the implementation which essentially followed the steps as outlined in the information
inspection task of ile last chapter. However, there was the need to do other preliminary research.
Initial analysis celled for a study of APTAS to get an overall view of the system that needed its
library populated. Also, a survey of existing code was conducted to select suitable modules for the

test. This chapter covers the preliminaries and Lthen details the renovation.

4.2 Preliminaries

A quick look through the available modules showed that FORTRAN was the primary language
used. This led to a study of FORTRAN and its data types. Following this study was a look at CipL
and its data structures. The reasor. for studying CIDL was that this is the language used in APTAS.
Also, it was necessary to compare the data types available in the two languages. Following the study
of the languages, APTAS was surveyed to learn how it was constructed. Its primary components
consisted of a knowledge base and a collection of library routines called primitives. The structure
of APTAS is represented in App~r:cix A. The top level presents a tracking system to be developed.
Questions are presenied o the user and the answers deternine what additional levels are added
to the developing ¢tructure. Kach new level adds new questions and each new answer may add
new levels. This process continues until there is sufficient detail for the knowledge base to select

between system primitives.

The research started with gathering samples of moduies from existing code that needed to
be put into the new system and gathering samples of existing primitives. Appendix D presents the
module that was chosen for transformation to the new system. It is a FORTRAN implementation
of a kalman filter as outlined in (4). This module was chiosen because it is used in several locations
in the APTAS structure. The TRACK_DATABASE presented in Appendix B is representative of

a primitive module in the APTAS gystem. This particular module was chosen to show the wide

4-1

variety of information that must be represented and the many files that are used in maintaining

the system knowledge base.

After analyzing the samples and the APTAS structure, the approach to transform the FOR-
TRAN module was further divided as follows: implement the filter in CiDL as a stand-alone module;
insert the new module into the knowledge base at the top level; ana move the module to its proper
place in the hierarchy. This approach was chosen for several reasons. The module presently existed
as a stand-alone module. So implementing it in this manner first would allow testing and verifica-
tion of operation apart from the APTAS system. This would ensure the CIDL representation was
correct and would enhance understanding of CIDL syntax and semantics. Inserting the module at
the top level would allow easier integration testing. Since all of the intermediate modules are not in
place, having this module at the top level will make it much easier to ensure it is invoked. Moving
the module to its final level will not require additional testing since integration and functionality
have been previously checked. It is a matter of locating and replacing the corresponding module
name in the hierarchy. After t ese preliminaries, research continued with the steps outlined in the

previous chaprer.

4.8 Source Code Analysis

This phase started with an examination of the files that were used. The source code wus
contained in a single file. However, examination of the code showed that 16 other files were created
during execution. Additionally, the file contained one subroutine to generate random numbers and
seven subroutines for matrix operations. FORTRAN library routine that were used in the program
were Sin, Cos, and Ran. All variables used in the program were single integers, one-dimensional
arrays of reals, or two-dimensional arrays of reals, The relationship between the sibroutines and
the main program was that all information exchange was accomplished by passing variables to the

subroutines so they could be modified.

As part of the source ccde analysis a search of the APTAS library was performed to find
routines that could be reused in the new module. The math module provided Sin, Cos, and

Random functions. CIbL did not directly implement arrays, liowever, there was an existing array

module that provided one-dimensional array operations and a matrix module thai provided two-

dimensional array operations. These modules did not provide all of the required functionality,
but they served as good models and were modified and reused. A matrixop module was also
available, but it only implemented multiplication and transposition. The following list shows all of

the functionality the modules were required to provide.

Math | Array | Matrix | Matrixop

sin assign assign add

cos index index subtract

random | print print multiply
initialize | initialize | inverse (limited to 2 x 2)
create create transpose

4.4 Design Recovery

An important part of this step is to choose u representation that allows easy transition into
the new system and representation of all the recovered information. Since the new system language
is CInL it was also chosen to represent the recovered design and facilitate translation into the new

system. The design representation of the existing system was not very complex. Its structure can

be described as follows.

The variable initializations were sequences of FORTRAN statements. The filter calculations were
sequences of statements along with calls to subroutines and library functions. A suitable CinL

strurture to represent the program turned out to be the let statement. Its structure is given here.

declare variables

open files

initialize variables

loop

do filter calculations
update variables
write values to files

end loop
close files

4-3

declare variables

open files

initialize variables

loop
do filter calculations
update variables
write values to files

end loop

close files

end let

Here also the program would consist of a sequence of statements, procedure calls, and library

function calls.

4.5 Information Inspection

The plan developed in this phase to do the actual transformation was straight forward. It
would be a phased conversion beginning with the declaration of variables in the new implementation.
The next phase would be implementation of the initializations. Once these had been carried out,
the sequence would continue with implementing statements, then library function calls, procedure
calls, and finally file output. Once file output was complete, comparisons between the original

functionality and the new implementation would begin. This would mark the end of converting the

selected module to CiDL.

The next phase of the conversion, as discussed previously, would be to put the new module
in the knowledge basc at the top level so the interfacing could be worked out. This tco would need
to be a phased task. Beginning at the top level, it would be necessary to insert a new menu option
to allow testing of a devclopment module. This involved creating the option, setting necessary
variables to deactivate the defaults, and activating levels that implemented the new functionality.
Also, the structure of the knowladge base makes it essential that the new module be represented
in the following files.

global.desc describing the new type and its parameters

global.gsdl-t describing the graphical representation of the new type

4-4

global.gsdl-1 describing the displayable cornpcnents
global.synth as a template for generating CipL

global.form representing the user interface

These items would be developed at this point in the transformation. After this interfacing is
completed, testing is performed to ¢nsure proper operation of the new module and its-1r *eraction
with the knowledge base. The last phase would simply 1equire renaming the module level as
dictated by the APTAS structure. This would remove the module from the test status and position

it as a normal primitive. Following this plan, the actual redesign can begin.

4.6 Redesign

The initial decisiou sequence did not require use of the redesign task in system renovation.
Since the modules were being used in other programs where they were assumed to function correctly,
the idea was to duplicate this functionality without redesign. During the actual reimplementation,
however, it became necessary to readdress this decision. As discussed in (8), the relationship
between this task and the next is iterative. This proved to be the case in this project. Two

particular problems are discussed here.

The transcendental functions used from the FORTRAN library were passed degrees for the
calculation. Passing these same numbers to the CivL functions resulted in errors of several orders
of magnitude. This was not discovered until the file output was implemented. To correct this error
required a change in the basic design to convert these numbers to radiaas as required by the CipL

library.

The matrix inverse subroutine in the original module was implemented using the goto state-
ment available in FORTRAN. Since CipL did not have a similar statement, this procedure had
to be completely redesigned. Since this version of the filter inverts only 2x2 matrices, a limited
procedure was easily developed. Extending this procedure to accommodate 3x3 matrices is not
very hard. However, extending the matrix inverse operation for a general nxn matrix will require
going to a block structured implementation of an algorithm such as the Gause-Jordan elimination

method (14).

4-5

4.7 Reimplementation

The reimplementation followed the plan developed in the information inspection task. Varia-
tions in the plan were due to discoveries during the implementation. Two of the problems encoun-
tered were discussed in the redesign task since they required a new look at the original redesign
decision. Other issues that did not have such a large impact are discussed here as the reimplemen-

tation is outlined.

Declaring integer and real variables turned out to be straight forward. Declaring and ini-
tializing arrays required modifying the available modules as described previously to provide the
needed functionality. Once the array modules were in place and tested, deciaring and initializing
arrays was easily accomplished. The matrix module built upon the array module and ied to further

modifications. Finally, the matrixop module was developed and tested.

As the statements were being converted, several undeclared variables were found and had to
be declared. FORTRAN allows some variables to be declared at use time and this is not allowed
in CIDL. Another problem that developed was with the names chosen for the variables in the
original program. They turned out to be reserved words in CipL and had to be renamed. Some of
the original variable types had to changed later also since CipL had much stronger type checking
(integer to real). Translation proceeded by taking FORTRAN statements and mapping them to

statements in CInL. There was continuous testing to ensure functionality was retained.

To complete the CIDL implementation of the module, a complementary test had to be devel-
oped. The fi1al nembers produced by the CipL implementation were not close enough to the figures
produced by the original program to verify functionality. It was suspected that the differences were
due to the random number generator differences. FORTRAN allowed setting the seed of the gen-
erator and CIpL did not. A test was developed by replacing the CIDL random number generator
with the sequence of numbers preduced by the FORTRAN program. Using these numbers, the two
programs had identical output. This marked the end of converting the chosen FORTRAN module
to a stand-alone module in CibL. Reimplementation moved to the task of integrating the module

into the knowledge base.

4-6

4.8 Summary

APTAS presently contains the overall structure for tracking systems, however, Appendix B
lists the modules that are presently still required to completely implement the system. Addition of
these modules will not require changing the -tructure of the present system. The method outlined
in this and the previous chapter can be used to put additional modules in the knowledge base.

Adding additional capability will modify the structure and will require more changes. The biggest

decision to be made will be determining the proper location in the existing hieracchy.

V. Conclusion and Recommendalions

5.1 Conclusion

Using design recovery as a means to populate a software library is feasible especially in the
case where the struciure of the library is in place. This allows the focus to be ou obtaining modules
with specific functicnality. Even if the medules cannot be used as is, they can provide guidance

for developing new modules during the redesign task of the renovation phase.

The decision to skip the redesign step proved unwise. The model showed that the redesign
and reimplementation steps were iterative in nature. Once reimplementation started, problems

were encountered that required the redesign step.

The original problem statement in Section 1.3 outlined the four areas that needed to be studied
in order to accomplish the library population. The internal formats of the APTAS knowledge base
are presented in Appendix A. Characterizing the modules that need to be placed into the library
must be accomplished for each module. Following the procedures in Sections 3.2.2 and 3.2.3 will
capture the module behavior. A sample plan for mapping the recovered design into the new format

is presented in Section 3.3.3. This plan must be customized for each new module.

5.2 Recommendations

The recommendations presented here are divided intc areas that need to be addressed in r

detail. The ordering of the recommendations is arbitrary.

5.2.1 The Knowledge Base The files that make up the knowledge base have grammars
associated with each of them. They are also common to all users of the sysiem. Presently there
are no tools specifically designed to maintain these files. Corruption of these files will lead to
system wide problems. Two suggestions for helping with this problem are developing a forms based
interface for the files and developing a small, stand-alone testbed for new modules. The interface
could be made to maintain the grammar for the global.desc, global.form, and other files in the

knowledge base limiting the possibility of corrupting these files.

The APTAS Software User’s Manual (13) also contains a communication network model as

another example of executable specification. It is a much smaller system, but it uses all of the

5-1

knowledge base component types used in the APTAS system. A similar model would make an
excellent testbed for new modules for the APTAS system. This would allow exsier testing and

integration into the knowledge base.

The items described would aid modifications to the system as it is presently defined. If the

structure needs to be changed, additional considerations may be necessary.

5.2.2 Selecting Modules The primitives used in the APTAS system cai best be described
as communicating sequential processes as defined in (11). They do their processing on information
sent by other processes. After the computation, results are sent back to the calling process. This
description hints at the best type of modules to select for the knowledge base. Best here refers to
structure. Modules that have all of their functionality hidden within a procedure are ideal. All
access to the internal structures should be through procedure calls, and the procedures must be
able to retain their values across calls. For modules that do not fit this structure, additional work
is required to decide which parts of the module are implementing the required behavior and which
parts are not needed. The worst type modules would bc those that perform interwoven, dissimilar

operations.

This idea is also beneficial in the development of candidate modules for other systems. Fol-
lowing the structure outlined above would allow casier reuse of the module in the APTAS system.

It sill also promote easier maintenance on the target system.

5.2.8 Translating Modules Due to the large number of files requirnd to complete the system
kncwledge base, automation of the process serms to be a must. One problem that may face
automating the process will be the number of languages used in candidate modules. Each language
will require developing a translator. If there ar¢ many modules in a given language, this may be

beneficial. Since the primitives that are required may have small sizes, it may be easier to code in

CiIpL using the selected modules as guides than o make translators to convert to CIDL.

Appendix A. Module Characteristics

Populating the knowledge base of the APTAS system requires manipulating six files. Five of
the files contain a portion of the information characterizing the description of a module. The final
file is the actual CipL implementation of the functionality of the module. This appendix presents
the TRACK_DATABASE module as it appears in the five files that describe the module. It also

describes the purpose of the file and the information it contains.

A.l1 Description

The description of the TRACK_DATABASE is given in the global.desc file. It acts as the help
file for the user of the system. It is accessed from the describe_type function of the GDE editor.
This file describes the types that are available to the system and lists all the parameters that are

contained in an instantiation of a particular type along with their function, and the interface.

TRACK_DATABASE:
This module is responsible for the storage,
management and retriaval of all track data.
PARAMETERS TO SPECIFY:
PLATFORM : platformtype
(ground or airborne)
TRACK_BUFFER_SIZE : int
(range : 1 to 50)
TRACK_HISTORY_SIZE : int
(range : 2 to 20)
PLATFORM_POS_BUFFER._SIZE : int
(range : 2 to 20)
MISSION_BUFFER_SIZE : int
(range : 1 to 10)
REQUTRED_APPLICATION _MEMORY : int
(This parameter value is
calculated during syntheais.
A value given to it in the
graphical editor will be
overwritten by the synthesis
engine. It’s visibility in
the graphical «ditor is merely
to provide information after
synthenis.)
RAM_MEMORY : int
(hov much is available for
the track database)

A-l

A.2 ICON Representution

This portion of the TRACK_DATABASE is taken from the global.gsdl-t file. It describes how
objecis are to be represented graphically and how they should be positioned in the GDE editor.

Also shown is the information for a relation.

TABLE TRACKER.DOMAIN

MODULE : TYPE
TRACK_DATABASE => ICON = MED_BLUE_RECT

LABEL = TOP BOTH

DEFAULT_PGSITION = CENTER

CONTENTS =
MODULE -> ICON = SM_RLECT
== LABEL = CENTER NAME
DEFAULT_POSITION = CENTER

IN_PORT -> ICON = MINI_CIRCLE
LABEL = LEFT NAME
DEFAULT_PUSITION » LEFT

OUT_PORT -> ICON = MINI_CIRCLE
LABEL = RIGHT NAME
DEFAULT_POSITION = RICHT

DISPLAY RELATIONS;

ASYNC : RELATIOH
VIDTH = ¢

COLOR = "Magenta"

FROM_END = PLAIN

TO_EKD = ARROW

VALID_PAIRS = (MODULE,MODULE)
EXTRA_ARG;

A.3 Components

The global.gsdl-1 file describes displayable components of a particular module. I, is nccessed

by the GDE editor.

TRACKER_DOMAIN

TRACK_DATABASE : MODULE =

DECLARE
PLATFURM : PLATFORMTYPE;
TRACK_BUFFER_SIZE : INT;
TRACK_HISTORY_SIZE : INT:
PLATFORM_POS_BUFFER_SIZE : INT;
MISSION_BUFFER_SIZE : INT;
REQUIRED_APPLICATION_MEMORY : INT;
R'M_MEMORY : INT

END

A.4 Synthesis

In the global.synth file all of the modules are represented as CiplL templates identifying
parameters of the module type. This information is used by the synthesis engine. to generate

CipL.

(detvar #prim-modules+ nil)
(setq *prim-~modules*
*((-CDL ((-PA (platZorm)
(typeunion ((typeenuxlit $ground)
(typeenunlit $airborne)))

(expvoid))
(-PA (track_buffer_size) int (expvoid))
(-PA (track_hisiory_size) int (expvoid))
(-PA (platform_pos_buffer_size) int (expvoid))
(-PA (mission_butfer_size) int (expvoid))
(~PA (required_application_memory) int (expvoid))
(-PA (ram_menory) int (expvoid))
)
O
(DECLPARAM TRACK_DATABASE_CREATE
O

TRACK_DATABASE (EXPSTRUCT NIL)))

A.5 Selection

The most important file to be modified is global.form. It contains form information that is
presented to the system uvser and module selection criteria. The form contains the questions that
guide the user through the refinement of the system. Based on user input, different combinations
of modules are combined. Updating this file requires locating a position in the hicrarchy for the

module and developing the selection criteria.

LEVELS

/TRACKING
"Tracker Boundary Conditions" TRUE

NOT_DEFAULT EQ NON3ENSE | NOT_DEFAULT NE "true" "Default Tracker?"
STACK
“true" VARIABLE_SET(DEFAULY_TRACKER, "“true)
ACTIVATE_LEVEL (/TRACKING/DEFAULT,.TRACKER)
ACTIVATE_LEVEL (/TRACKING/DEFAULT _TRACKER/TRACK_DATABASE)
ACTIVATE_LEVEL (/TRACKING/DEFAULT_TRACKER/SCAN_TO_TRACK_CORRELATION)
ACTIVATE_LEVEL (/TRACKING/DEFAULT_TRACKER/PRESENTATION_PROCESS)
"false" VARIABLE_SET(DEFAULT_TRACKER, "false")
DEACTIVATE _LEVEL(/TRACKING/DEFAULT_THACKER)
DEACTIVATE _LEVEL(/TRACKING/DEFAULT_TRACKER/TRACK_DATABASE)
DEACTIVATE_LEVEL (/TRACKING/DEFAULT_TRACKER/SCAN_TO_TRACK_CCRRELATION)
DEACTIVATE_LEVEL (/TRACKING/DEFAULT_TRACKER/PRESENTATION_PROCESS)
0;

"Tast Iterations Count'
NUMERIC (1, 100]

{1, 100] SAVE_VALUE(TEST_LTERATIDNS)
30;

/TRACKING/DEFAULT_TRACKER

"Default Tracker Top-Level' FALSE
“No questions, this is a default module.”
CHECKLYST ""

END;

/TRACKING/DEFAULT_TRACKER/TRACK_DATABASE
"Default Tracker Database" FALSE
"No questions, this is a default module."
CHECKLIST "

END

NODULES

“TRACKER_ENVIROMMENT"
"Seusor_Data" "SENSOR_MODEL"
{"ITERATIONS" » TEST_ITERATIONS;
Y"PERTURBATION_FACTOR" = 0.02;
"TARGET_SPECS" = “"[[COMPUTE_FUN = “DEFAULT_EQ1 ;
ARGS = [0.0B9; 0.009; 1.78;
1.16; 92.31; 8.23]];
[COMPUTE_FUN = “DEFAULT_EQ2 ;
ARGS = [0.191; 0.083; 2.46;
2,09; 81.04; -7.23111";
HSENSOR" w ~"~SENSOR_TYPE"}
default _tracker EQ "true"

"Tracker" “TARGET_TRACKER"
default_tracker NE “true"

“Tracker" "NEW_TRACKER"

"Output" “OUTPUT_DISPLAY"

{"TABLE _DATA_FILE" =
"deta_files/default_tracker_table_data.tixt';
WMAP_DATA_FILE" »
"data_files/detault_tracker_map_data.txt';
"ITERATIONS" = TEST_ITERATIONS}

REL("Sensor_Scan_Frame_To_Tracker", "Async",
"Sensor_Data.scun_fraome_out", "Tracker.scau_frame_in",
“""GenericScanFraxe')

REL ("Operator_Query_to_Tracker", "Async",

“Output.query.out", "Tracker.user_query_in",
~"Genericluary")

REL("Tracker_Data_to_Display", "Asyac",

“Tracker.display_data_out', "Output.reply_in",
““GenericTrackData")

A-5

"TARGET_TRACKER"
"TDB" "TRACX_DATABASE"

{"RAM_MEMORY" = RAM_MEMORY:
"REQUIRED_APPLICATION_MEMORY" = 0;
"MISSION_BUFFER_SIZE" = b;
"PLATFORM_PUS_BUFFER_SIZE" = §;
“TRACK_HISTORY_SIZE" = 10;
“TRACK_BUFFER_SIZE" w» NUM_OF_TARGETS;
“PLATFORM" = ""'“FLATFORM_TYPE"}

“STC! "SCAB_TO_TRACK_CORRELATION"

{"TERMINATED _TEKT _TRACK_SAVE _LIMIT" = 5;
"TERMINATED_REQ_TRACK_SAVE_LIMIT" « 20;
"TENTATIVE_TO_REGULAR_THRESHOLD" = 4;
“"TERMINATION_THRESHOLDS" = ~"[4; 2]";
"INITIAL_GATE_DELTAS" w» ~"[5,0; b.0]";
“"REDUCED_DELTA_FACTORS" = “#[0.8; 0.B]";
“INCREASED_DELTA_FACTORS" = ~"[2,0; 2.,0]";
"DECOYS" = ““FALSE";
"FALSE_ALARM_PROBABILITY" = 0.10;
"TARGET_TRAJECTORY" = ~“MANEUVERING';
"TARGET _DENSITY" » ~"MEDIUM";
"TARGET_PROBABILITY_OF_DETECTION" = 0.9
"PLATFORM" w “"~PLATFORM_TYPE";
“DATABASE" = “"TDB"}

ppn "PRESENTATION_PROCESS"
{"DATABASE" = ~"TDB"}

DECL("Scan_Frame_In", "In_Port", "")
DECL("User_Query_In", "In_Port", "")
DECL("Display_Data_Out", "Out_Port", "")

REL("STC_Database_TDDB_Parameter_Hodule", "Parameter_Moduls',
"§7¢ . database’, "TDB", "")
REL("PP_Database_.TDB_Parameter_Module", "Parawetar_Module",
“PP.database", "TDB", "")
REL("Process_Scan_Frame_In", "Apply_Function",
“Scan_Frame_In", "STC.Process_Scan_Frame", "GenericScanFrame")
REL("Process_User_Query_In", "Apply_Function",
"User_Query_In", "PP.Get_Data_For_Display", “Genericuery")
SL("Forvard_Display_Data", "Forward_Function_Result",
"PP.Get_Data_Foxr_Display", "Display_Data_Out",
“GenericTrackData")

A-6

Appendix B. System Structure and Population

This appendix shows the structure of the global.form file as it represents the structure of the
system. Structure is represented similar to a file system directory. /TRACKING is the top level of
the structure. Anything represented as /TRACKING/SOMENAME would be at the second level of
the structure and /TRACKING/SOMENAME/OTHERNAME is at the third level. The LEVELS
section of this file represents the hierarchy of enabling forms, and the MODULES section captures
the parameters and values. At the battom of the MODULES section are the lowest level primitives.

The primitives without parameters, marked by ';’, have not presently been implemented.

LEVELS
/TRACKING

/TRACKING/ZERD_SCAN_SIGNAL_PROCESSING_INTERACTION

/TRACKING/N_SCAN_REED_SIGNAL_PROCESSING_INTERACTION

/TRACKING/K_SCAN_TEMPLATE_SIGNAL_PROCESSING._INTERACTION

/TRACKYNG/MICRUWAVE RADAR_SENSOR

/YRACKING/X _DAND_MED_PRF_RADAR_SENSOR

/TRACKING/PLATFORM

/TRACKING/PROCESSOR

/TRACKING,’DEFAULT _TRACKER
/TRACKING/DEFAULT _TRACKER/TRACK_DATABASE
/TRACKING/DEFAULT _TRACKER/SCAN_TN_TRACK_CORRELATION
/TRACKING/DEFAULT _TRACKER/PRESENTATION,_PROCESS

/TRACKING/CLUTTER
/TRACKING,CLUTTER/EST _PRED
/TRACKING/SLUTTER/EST_PRED/DYN_M0D/VEL_VIUS_ACC
/TRACKING/CLUTTER/ASSUC
/TRACKING/CLUTTER/AS50C/HYP _SELECY .0 SCAN_UNCOORD
/TRACKING/CLUTTER/ASS(C/HYP_SELECT_O_SCAN_CODRD
/TRACKING/CLUTTER/ASS0C/HYP_SELECT_N_SCAN_UNCOORD
/TRACKING/CLUTTER/ASS0C/HYP_SELECT _N_SCAN_COORD
/TRACKING/CLUTTER/PRO_DEM

/TRACKING/SENSOR
/TRACKING/SENSOR/ROISE
/TRACKIRG/SENSOR/NCISE/DG_SLUTTER
/TRACXING/SENSOR/NOISE/PG_CLUTTER
/TRACKING/SENSOR/NOISE/DA_CLUTTER
/TRACKTING/SENSOR/NUISE/PA_CLUTTER
/TRACKING/SENSOR/NOISE/SEA
/TRACKXING/SENSOR/NOISE/JAMMING

/TRACKING/SINGLE_CSO
/TRACKING/SIHGLE_CSO/TARGET _CHARS
/TRACKING/3INGLF._C50/E3T_PRED
/TRACKING/SINGLE_CS0/EST.PRED/DYN_MOL.’VEL_PLUS_ACC
/TRACKING/SINGLE_CS0/ASSGC
/TRACKING/SINGLE_CS0/ASSOC/HYP_SELECT_0_SCAN_UNGCOORD
/TRACKING/SINGLE_CSO/ASSOC/HYP_SELECT_0_SCAN_COORD

B-1

/TRACKING/SINGLE_CSQ/ASSOC/HYP_SELECT_N_SCAN_UNCOORD

B /TRACKING/SINGLE_CSO/ASSOC/HYP_SELECT_N_SCAN_CCORD -:
/TRACKING/SINGLE_CSO/PR0O_DEM A
/TRACKING/GROUPS A

/TRACKING/GROUPS/EST_PRED

/TRACKING/GROUPS/EST_PRED/DYN_MOD/VEL_PLUS_ACC
/TRACKTNG/GROUPS/ASSOC ’
/TRACKING/GROUPS/ASSOC/HYP_SELECT_0_SCAN_UNCOORD E
/TRACKING/GROUPS/ASSOC/HYP_SELECT_0_SCAN_COORD g
/TRACKING/GROUPS/ASSOC/HYP_SELECT_N_SCAN_UNCOORD =
/TRACKING/GROUPS/ASSOC/HYP_SELECT_N_SCAN_COORD X
/TRAGKING/GROUPS/PRO_DEN !

/TRACKING/FORMATIONS .
/TRACKING/FORMATIONS/EST_PRED _'
/TRACKING/FORMATIONS/EST _PRED/DYN_MOD/VEL_PLUS_ACC .
/TRACKING/FCRMATIONS/ASS0C R

/TRACKING/FORMATIUNS/PRO_DEM)

MODULES N

"TRACKER_ENVIRONMENT"
"Sensor _Data"
"SENSOR_MODEL"
"Tracker" "
“TARGET_TRACKER" "
“Trackexr" ’
“NEV_TRACKER"
“Output" i
“QUTPUT_DISPLAY"

"TARGET_TRACKER" .
. HTDB“
*“TRACK _DATABASE"
lls’rcn
“"SCAN_TO_TRACK _CORRELATION"
IIPPII
"PRESENTATION_PRUCESS"

"NEW_TRACKER"
“Signal_Processing"
"ZERD_SCAN_SIG_PROC"
“N_SCAN_REED_SIG_PROC"
“N..SCAN_TEMPLATE_MATCHING_SIG_PROC"
"Process_Single_Objocis"
“SINGLE_QOBJECTS"
"Process_Single_Objects_and_CSUs"
"SINGLE_OBJECTS"
. "Process_Groups"
“GROUPS™"
"Process_Formations'
“"FORMATIONS"
"Process_Cluttes’
"CLUTTER _DISCRETES"

"GINGLE_OBJECTS"

B-2

"Estimation_Prediction"
"SINGLE_ESTIMATION_PREDICTION"
"Association"
"SINGLE_ASSOCIATION"
"Promotion_Demotion"
"SINGLE_PROMOTION DEMOTION"

“SINGLE_ESTIMATION_PREDICTION"
"Oynamical_Model"
"CONSTANT _VELOCITY_DYNAMICAL_MODEL"
"CONSTAHT _ACCELERATION_DYNAMICAL_MODEL"
“SINGLE_VEL_PLUS_ACC_DYNAMICAL_MODEL"
“Mearurement_Model’

“RAE_MEAS _MODEL"
I "YAE_MFAS_MODEL"

_ "RVAE_MEAS_MODEL"
_’: “Plant_Noise_Model"

"FIXED_PLANT_NOISE_MODEL"
"KNOWN_AM1_PLANT_NOISE_MOLEL"
"Filtez"
~ "SIMPLIFIED_GAINS_FILTER"
. "LEAST_SQUARES_FILTER"
o o "KALMAN_FILTER"
“Initial_State_Model"
"SINGLE_OBS_DERIVED_INIT_STATE_MODEL"
“"SINGLE, GRP_TRK_DERIVED_INIT_STATE_MGDEL"

"SINGLE_VEL_PLUS_ACC_DYNAMICAL _MODEL"
"Model _Gaeneration’
"GATE_BASED_MODEL _GEMERATION"
"CHI_SQUARE BASED_MODEL_GENERATION"
"LIKELIHOOD_BASED_MODEL_GENERATION"
"PROBABILITY_DASED_MODEL_CENERATION"
"Model_Score"
“"HIT_MISS_PATTERN_SCORING"
"CHI_SQUARE_SCORING"
"LIKELIHOOD_SCORING"
"PROBABILITY_SCORING"
"Model_Selection'
“ZERO_SCAN_DYNAMICAL _MODEL_SELECTION"
"N_SCAN_DYNAMICAL _MODEL_SELECTION"
“Model Transition”
"VEL_TO_ACC_DYHAMICAL _MODEL_TRANSITION"
“"ACC_TO_VEL_DYNAMICAL_MODEL_TRANSITION"

"SINGLE_ASSOCIATION"
"“Gate_Calculation"
"RECTANGULAR_GATE_CALCULATION"
"ELLIPTICAL_GATE_CALCULATION"
"PARALLELOGRAM_GATE_CALCULATION"
"Candidate_Generation™
o "GATE_BASED_CANDIDATE _GrNERATION"
"CHI_SQUARE_BASED_CAYDIDATE_GENERATION"
"LIKELIKUOD_BASED_CANDIDATE_GENERATION"
"PROBABILITY_BASED_CANDIDATE_GENERATION"

B-3

"Candidate_Scoring"
"HIT_MISS_PATTERN_SCORING"
"CHI_SQUARE_SCORING"
“LIKELIHOOD_SCORING"
"PROBABILITY_SCORING"

"Candidate_Selection"
"Z_SCAN_UNCOORD_HARD_SELECTION®
“PDA_HYP_SELECTION"
"GREEDY_HYP_SELECTION"
"MUNKRES_HYP_SELECTION"

"MUNKRES _W_CLEANUP_HYP_SELECTION"
"CLEANUP_HYP_SELECTION"
"AUCTION_HYP_SELEGTION“
"NETWORK_FLOW_HYP_SELECTION"
“INT_PRUG_HYP_SELECTION"
“JPDA_HYP_SELECTION"
"SPLITTING_HYP_SELECTION"
“"SPLITTING_W_MERGING_HYP_SELECTION"
"SINGLE_N_SCAN_CUORDINATED_SELECTION"
“"SINGLE_N_SCAN_COORDINATED_SELECTION"

"SINGLE_N_SCAN_CQORDINATED_SELECTION"
"Hypothesis Generation"
"K_BEST_HYP_GEMERATION"
“ALL_ABOVE_THRESHOLD_HYP_GENERATION"
“Hypotheais Seluction"
"N_SCAN_CUORD_HYI _SELECTION"

"SINGLE_PROMOTION_DEMOTION"
"Initiatioen’
"ON_ALL_INIT_LOGIC"
"GATE_BASED_INIT_LGGIC"
"CHI_SQUARE_BASED_INIT_LOGIC"
“"LIKELIHQOD_BASED_INIT_LOGIC"
"PROBABILITY_BASED_TNIT_LGGIC"
"Track_Scoring"
"HIT_MISS_PAT{ERN_SCORING"
“"CHI_SQUARE_SCORING"
"LIKELIHOOD_SCORING"
"PROBABILITY_SCORING"
“Promote_Logic"
"M_OF_N_PROMOTE_LOGIC"
"CHI_GQUARE_TEST,_ PROMUTE_LOGIC
“"LIKELTHOOD_TEST_PROMOTE_LOGIC"
"PROBABILITY_TEST _PROMOTE_LOGIy"
"Demote_Logic"
"K_MISS_DEMOTE_LO3IC"
"CHI_SQUARE_TEST_DFMOTE_LUGIC"
"LIKELIKCOD_TEST_DEMOTE_LOGIC"
"PROBMBILITY_TEST_DEMOTE_LOGIC"

"“GROUPS"
"Estimation_Prediction"
"GROUPS__ESTIMATION_PREDICTION"
"Association”

B-4

"GROUPS _ASSOCIATION"
“"Prowotion_D~aotion"
"GROUPS_PRUMOTION_DEMOTION"

“GROUPS_ESTIMATION_PREDiICTION"
"Centzoid_Dynamical Model"
"CONSTANT_VELOCITY_DYNAMICAL_MODEL"
"CONSTANT _ACCELERATION_DYNAMICAL_MODEL"
"GROUPS, VEL_PLUS_ACC_DYNAMICAL_MODEL"
"Measurement _Modael®
"RAE_MEAS_MODEL"
"VAE_MEAS_MODEL"
"RVAE_MEAS_MODEL"
“Plant_Noise_Model"
"FIXED_PLANT_NOYSE_MODEL"
"KNOWN_AMI_PLANT_NOXISE_MODEL"
“Filter"
"SIMPLIFIED_GAINS_FILTER"
"JEAST_SQUARES_FILTER"
“YALMAN_FILTER"
"Injtiel _State_Model"
“QROUPS_INIT_STATE_MODEL"

“GROUPS_VEL_PLUS_ACC_DYNAMICAL_MODEL"

"Model _Genwvration'
"GATE_BASED_MODEL_GENERATION®
"CHI_SQUARE_BASED_MOPEL_GENERATIOK"
“LIKELIKOOD_BASED_MODEL_GENERATION"
"PROBABILITY_BASED_MODEL_JENERATION"

""Model_Score"

"HIT_MISS_PATTERN_SCORING"
YCHI_SQUARE_SCORING"
"LIKELIHAQ0D_SCORING"
"PROBAB:LITY_SCORING"

“Mode)._Selection"
"ZERO_SCAN_DYNAMICAL_MODEL_SELECTION"

"N_SCAN_DYNAMICAL_¥ODEL_SELECTION"

"Modael _Transition"
"VEL_TO_aCC_DYNAMICAL_MODZL_TRANSITIUON"
"ACC_TO_VEL_DYNAMICAL_MODEL_TRANSIYION"

"GROUPS_A3SSOCIATION"

"Gate_Calculation
"RECTANGULAR_GATE_CALCULATION®
“ELLIPTICAL_GATE_CALCULATION"
"PARALLELOGRAM _GATE_CALCULATION"

"“Candidate_Generaticq"
"GROUPS_INDEPENDENT HYP_GENERATION"
"QROUPS_DEPENDENT_HYP_GENERATION™

"Candidate_Scoring"
"HIT_MISS_PATTERN_SCORING"
"CHI_SQUARE_SCORING"
"LIKELIHOOD_SCORING"
"PRCBABILITY_SCORING"

"Candidato_Selection”

“2_.SCAN_UNCGORU_HARD_SELECTION"
“PDA_RYP_SELECTIQN"
“GREZVY_HYP_SELE/TILOE"

"MUNKRES HYP_SELECTION"
"HUNKRES_U_CIEANUP_HYP _SELECTION"
“CLEAYUY HYP_SELECTION"

"AUCTION_HYP SELICTYON"
"RETWORK_FLOW_HYP_SELRECTION"
"INT_PRRG_HTY_SELECTION"

"JPDA_HYP _SELECTION"
“SPLITYING_HYP_SELECTION"

“SPLITTING W_MERGING_HYP_SELECTION"
"GROUPS_N_SCAN_COORDINATED_SELECTION"
“GROUPS_N_SCAN_COORDINATED_SELECTION"

"GROUPS_h_SCAN_COORDINATED_SELECTIOR"
"Hypothesis Generation"
“"K_BEST_HYP_GENFRATION"
"ALL_ABOVE_{HRW.SHOLD_HYP_GENERATION"
“Hypothesis Selection"
“N_3CAL_COORD_HYP_SELECTION"

"GROUPS_YROMOTION_DEMUTION"
"Initiation"
“ON_ALL_INIT_LOGIC"
"GATE_BASED_INIT_LOGIC"
"CHI_SQUARE_BASED_INIT_LOGIC"
"LIKELIHOOD_BASED_IKIT_LOGIC"
"PROBABILITY_BASED_INIT_LOGIC"
"Track_Scoring"
“"HIT_MISS_PATTERN_SCORING"
"“CHI_SQUARE_SCORING"
“LIKELIHOOD_SCORING"
"PROBABILITY_SCORING"
"Promote_Logic"
"M_0F _N_PROMOTE_LOGIC"
"CHI_SQUARE_TEST_PROMOTE_LOGIC"
"LIKELIHOOD _TEST_PROMOTE_LOGIC"
"PROBABILITY_ TEST_PROMOTE_LOGIC"
"Demote_Logic"
"K_MISS DEMOTE_LOGIC"
"CHI_SQUARE_TEST_DEMOTE_LOGIC"
“LYKELTHOOD_TEST _CEMOTE_LOGIC"
“PROBABILITY TEST_DEMOTE_LOGIC™

"FCRMATIONS"
"Estimation_Prediction"
"FORMATIONS _ESTIMATION_PREDICT1ON"
“Association"
"FORMATIONS _ASSOCIATION"
“Promotion_Demotion"
"FORMATIONS _PROMOTIOE_DEMOTION"

“"FORMATIOKS _ESTIMATION_PREDICTION"
"Dynamical_Model"

B-6

LL".unn P B3 LAl - o

"“CONSTANT _VELOCITY_DYNAMICAL_MODEL"
“CONSTANT _ACCELERATION _DYNAMICAL_MODEL"
"“FORMATIONS_VEL_PLUS_ACC_DYNAMICAL_MODFL"

""Measurement_Model"

“RAE_HEAS _MODEL"
“VAE_MEAS_MODEL"
“RVAE_MEAS_MODEL"

"Plant_Noise_Mudel"
“F1XED_PLANT_NOISE_MODEL"
"'XNOWK_AM1_PLANT_NOISE_NODEL"

"Filter"

"SIMPLIFIED_GAINS_FILTER"
"“LEAST_SQUARES_FILTER"
“KALMAY_FILTER"

"Initial_State_Model"

"FORMATIONS_INXT_STATE_MODLEL"

"FORMATIONS_VEL_PLUS_ACC_DYNAMICAL_MODEL"

"Model_Generation"
"GATE_BASED_MODEL_GENERATION"
"“CHI_SQUARS_BASED_MODEL_GENERATTON"
“LIKELIHOOD_BASEC_MODEL_GENERATIONY
“PROBABILITY_ BASED_MODEL_GENFRATION"

"Modael_Score™
"HIT_MISS_PATTERN_SCORING"
"“CHI_SQUARE_SCORING"
"LIKELYHOUD_SCORING"
“PRGBABILITY _SCORING

“Model_Selection"
“ZERO_SCAN_DYNANICAL_MODEJ_SELE:.TICN"
"H_SCAN_DYNAMICAL_MODEL_SELECTION"

"Kudel_Transition®
"VEL_T(I_ACC_DYNAKICAL_MODEL_TRANSITION"
“ACC_TO_VEL_DYNAMICAL MODEL_TRANSITYON"

"FORMATIOKS_ASSOCIATION"
"Gate_Calculation"
"RECTANGULAR_GATE _CALCULATION"
MELLIPTICAL GATE_CALCULATION"
" PARALLELOGRAM_GATE_CALCULATION"
"Coirelation”
"FORMATIONS. TEMPLATE_CORM'
“FORMATIONS STATISTICAL_CORR"
"FORMATIONS _INTEATRACK _CORRM

"¥ORMATIONS _PROMOT1ON_DEMOTION"
"Initiation"
"ON_ALL_INIT_LOGIC"
"GATFE_DASED_IFIT_LOGIG"
"CHI_SQUARE_BASED_INIT_LOGIC"
"LIKELIHOOD_BASED_INIT_LOGIC"
“PROBABILITY_BASED_INIT_LOGIC"
"Track. Scoring"

"HIV_H1SS_PATTERN_SCORING"
"CHI_SQUARE_SCORING"

. “LIKELTHOOD_SCORING"
' "PROBABILITY_SCORING"
"Promote_Logic"
"M_OF .N_PROMOTE_LOGIC"
"CHI..SQUARE_TEST_PROMOTE_LOGIC"
"LIKELIHOOD_TEST_PROMOTE_LOGIC"
"PROBABILITY_TEST_PROMOTE_LCGIC"
"Demote_Logic"
"K_MISS_DEMOTE_LOGIC"
""CHI_SQUARE_TEST_DEMOTE_LOGIC"
“LIKELIHOOD_TEST _DEMOTE_LOGTC"
"PROBABILITY_TEST_DEMOTE_LOGIC"

"CLUTTER_DISCRETES"
"Estimation_Prediction"
"CLUTTER_ESTIMATION_PREDICTION"
"Association"
"CLUTTEK_ASSOCTATION"
"Promotion_Demotion"
"“CLUTTER_PROMOTION_DEMOTION"

“CLUTTER_ESTIMATION_PREDICTION"
"Dynamical_Model"
"CONSTANT _VELOCITY_DYNAMICAL_MODEL"
"CONSTANT _AC/ELERATION_DYNAMICAL_MODEL"
"CLUTTER.VEL_PLUS_ACC_DYNAMICAL_MODEL"
"Measurement_Model"
"RAE_MEAS_MODEL"
“VAE_MEAS_MODEL"
- “RVAE_VEAS_MODEL"
{: "Plant_Ncise_Model"
E “FIXERN._PLANT_NOISE_MODEL"
"KNOWN_AM1_PLANT_NOISE_MODEL"
"Filter"
“SIMPLIFIED_GAINS_FILTER"
“LEAST_SQUARES_FIVLT,
"KALMAN_FILTER"
"Initial_State_Model"
“CLUTTER_INIT_STATE_MODEL"

“CLUTTER_VEL_PLUS_ACC_DYNAMICAL_MODEL"
""Model _Generation"
"GATE_BASED_MODEL_GENERATION"

N "“CHI_SQUARE_BASED_MODEL_GENERATION"
"LIKELIHNOD_BASED_MODEL_GENERATION"
"PROBABILITY _BASED_MODEL_GENERATION"

"Model_Score"

"HIT_MISS_PATTERN_SCORING"
"CHI_SQUARE_SCORING"
"LIKELIHOOD_SCORING"
"PROBABILITY_SCORING"

"Model_Selection"
"ZERO_SCAN_DYNAMICAL_MODEL_SELECTION"
"H_SCAN_DYNAMICAL_MODEL_SELECTION"

"Model _Transition"

"VEL_'70_ACC_DYNAMICAL_MODEL_TRANSITION"
“"ACC_TO_VEL_DYNAMICAL_MODEL_TRANSITION"

"CLUTTER_ASSOGCIATION"

“Gate_Calculation'
“RECTANGULAR_GATE_CALCULATION"
“ELLIPTICAL_GATE_CALCULATION"
"PARALLELOGRAM_GATE_CALCULATION"

"Candidate_Generation
“GATE_BASED_CANDIDATE _GENERATION"

“CHI_SQU4RE_BASED_CANDIDATE_GENERATION"
“LIKEL1HOOD BASED_CANDIDATE_GENEPRATION"
“PROBABILITY_BASED_CANDIDATE_GENERATION"

"'Candidate_Scoring"
“KIT_MISS_PATTERN_SCGRING"
“CHI_SQUARE_SCORING"
“LIXELIHOOD_SCORING"
“PROBABILITY_SCORING"

‘'Candidate_Selection"
"Z_SCAN_UNCOORD_HARD_SELEGTION"
“PDA_HYP_SELECTION"
“GREEDY_HYP_SELECTION"
“"MUNKRES_HYP_SELECTION"
"MUNKRES_W_CLEANUP_HYP_SELECTION"
“CLEANUP_HYP_SELECTION"
"AUCTION_HYP_SELECTION"
“"NETWORK_FLOW_HYP_SELECTION"
“INT_PROG_HYP_SELECTION"
"JPDA_HYP_SELECTION"
“SPLITTING_HYP_SELECTION"
"SPLITTING.¥_MERGING_HYP_SELECTION"
WCLUTTER_N_SCAN_COORDINATED_SELECTION"
“CLUTTER_N_SCAN_COORDINATED_SELECTION"

"CLUTTER_N_SCAN_COORDINATED _SELECTION"
"Hypothesis Ueneration"
"K_BEST_EYP_GENERATIGN"
"ALL_ABOVE_THRESHOLD_HYP_GENERATION"
"Hypothasis Selecticn"
“"N_SCAN_COORD_HYP_SELECTION"

"CLUTYER_PROMOTION_DEMOTION"
"Initiation"
“"ON_ALL_INIT_LOGIC"
"GATE_BAS™D_INIT_LOGIC"
"CHI_SUUALE_BASED_INIT_LOGIC"
"LIKELIHOOD_BASED_INIT_LOGIC"
"PROBABILITY_BASED_INIT_LOGIC"

"Track_Scoring'
"HIT_MISS_PATTERN_SCORING"
"CHI_SQUARE_SCORING"
"LIKELIHOOD_SCORING"
"PROBABIL1TY_SCCRING"

"Promote_lLogic"

«..0F _N_PROMOTE_LOGIC"

"CHI_SQUARE_TEST_PROMOTE_LOGIC"
"LIKELIHOOD_TEST_PROMOTE_LOGIC"
"PROBABILITY_TiiST_PROMOTE_LOGIC"
"Demote_Logic"
"K_MISS_UEMOTE_LCGIC"
"CHI_SQUARE_TEST.DENJTE_LOGIC"
“"LIKELINOOD_TEST_DEMOTE_LOGIC"
"PROBABILITY_TEST_DEMOTE_LOGIC"

“"ZERO_SGAN_SIG_PROC" H
"N_SCAN_REED_SIG_PROC" H
“"N_SCAN_TEMPLATF _MATCHING_SIG_PROC" :

" ATE_BASED_MODEL _GENERATION" :
"CHI_SQUARE_BASED_MODEL_GENERATION" ;
"LIKELTHOOD_BASED_MUDEI._.GENERATION" H
"PROBABILITY_BASED_MODEL_GENERATION" H

"ZERO_SCAN_DYNAMICAL _MODEL_SELECTION" H
"N, _SCAN_DYN/LMICAL _MODEL_SELECTION" H

"VEL_TO_ACC_DYNAMICAL_MODEL_TRANSITION"
“AGC_TO_VEL_DYNAMICAL_MODEL_THANSITION" ;

"RAE_MEAS_MUDEL" i
“"VAE_MEAS_MODEL" H
"RVAE_MEAS_MODEL" H

“FIXED_PLANT_NOISE_MODEL"
"KNOWN_AM1_PLANT_NCISE_MODEL"

“SIMPLIFIED_GAINS_F1LTER"
"LEAST_SQUARES _FILTER"
"KALMAN_FILTER"

“SINGLE_0BS_DERIVED_INIT_STATE_MODEL" H
"SINGLE_GRP_TRK_DERIVED_INIT_STATE_MODEL" ;

"CONSTANT_ _VELOCITY_DYNAMICAL_MOLDEL" H
""CONSTANT_ACCELERATION_DYNAMICAL_MODEL" ;

“K_BEST_HYP,_GENERATION" H
. “ALL_ABOVE_THRESHOLD_HYP_GENERATION" :

“N_SCAN_COORD_HYP_SELECTION" H
"RECTANGULAR_GATE_CALCULATION" H

"ELLIPTICAL_GATE_CALCULATION" H
"PARALLELOGRAM_GATE_CALCULATION" :

""GATE_BASED_CANDIOATE_GENERATION" H
"CHI_SQUARE_BASED_CANDIDATE_GENERATION" ;
"LIKELTHOOD_BASED_CANDIDATE_GENERATION"
"PROBABILITY_BASED_CANDIDATE_GENERATION"

"Z_SCAN_UNCQORD_HARD_SELECTIOR" ;
"PDA_HYP_SELECTION" ;
"GQREEDY_HYP_SELECTION" :
“MUNKRES _HYP_SELECTION" H
"MUNKRES_W_CLEANUP_HYP_SELECTIUN" H
"“CLEANUP _HYP_SELECTION" H
“"AUCTION_HYP_SELECTION" H
"NETWORK _FLOU_HYP_SELECTION" H
“INY_PROG_HYP_SELECTION" H
"*JPDA_HYP_SELECTION" H
"SPLITTING, HYP_SELECTION" H
"SPLITTING_W_MERGING_HYP_SELECTION" i

"ON_ALL_INIT_LOGIC" H
"GATE_BASED_INIT_LOGIC" H
"CHI_SQUARE_BASED_INIT_LOGIC" H
"LIKELIHOOD_BASED_INIT_LDGIC" :

"HIT_MISS_PATTERN_SCORING" H
"CHI_SQUARE_SCORING" H
"LIKELIHOOD_SCORING" H
"PROBABILITY_SCORING" H

“M_OF_N_PROMOTE_LUGIC"
"GHI_SQUARE_TEST_PROMOTE_LOGIC"
"LIKELIHOOD_TEST_PROMOTE_.LOGIC"
"PROBABILITY_TEST_PROMCTE_LOGIC"

"K_MISS_DEMOTE_LOGIC"
"CHI_SQUARE_TEST_DEMOTE_LOGIC"
"LIKELIHOOD_TEST_DEMOTE_LOGIC"
"PROBABILITY_TEST_DEMOTE_LOGIC"

"GROUPS_THDEPENDENT _HYP_GENERATION" H
"GROUPS_DEPENDENT_HYP_GENERATION" H

"GROUPS_INIT_STATE_MOLEL" H
"FORMATIONS_INIT_STATE_MODEL" :
"CLUTTER_INIT_STATE_WODEL" H

"FORMATIONS_ _TEMFLATE_CORR"
"FORMATIONS_STATISTICAL_CORR"
"FORMATIONS _INTERTRACK_CORR"

LHS = RHS
x: T

' T

x: T

X

X

)
PX

FX
ScT
tes
tgs
SuT
SNnT
T,x T,
X+Y
I—m
Z Schema
A Schema
S«T
Ri® R,
!

Appendix C. Summary of Z Notation

Definition of LHS as syntactically equivalent to RHS
Declaration of x as type T

Declaration of x as type T used as input to an operation
Declaration of x as type T used as output by an operation
Value of x before an operation

Value of x after an operation

The empty set

The power set of X

The finite subset x of X

S is a subset of T

t is an element of S

t is not an element of S

Set union

Set intersection

Cartesian product

The set of partial functions from X to Y

1 is related to m

Include but do not change the schemn

Include and allow change to the schema

Domain subtraction

Overriding

Such that

C-1

Appendix D. Selected FORTRAN Module

C HOMEWORK PROJECT #1 - DISCRETE XALMAN FILTER
c GREG BIERMAN
c

PROGRAM PROJI

(]

VARIABLE LIST
IMNPLICIT NONE
INTEGER X,C,11,12,7S,I0PT,NGR,NPT,J
REAL X(100),Y(100),wX(100),WY(100) ,XHATN(2,1) ,KHATOLD(2,1)
REAL VX(100),VY{100),2(2,1) ,XHAT(2,1),ZHAT(2,1) ,NU(2,1)
REAL P(2,2),F(2,2),FT(2,2),R(2,2),PN(2,2)
REAL TEMP1(2,2),TEMP2(2,2),Q(2,2),H(2,2),8(2,2),iT(2,2),51(2,2)
REAL W(2,2),¥T(2,2) ,XTILDE(2,1) ,XTILDET(1,2) ,EPSILON(1,1)
REAL Graph(20,200),PI(2,2)
CHARACTER+16 Nameg(20)
COMMON /SEED/ 11,12
I1=12345
I12=B543214

¢ OPEN FILES USED TO STORE DATA
Open(Unit=8,File=!KALMAN.PLT’ ,FORM=’ unformatted’,Status=’nev’)
Opsn{Unite9,File=’KALMAN.PL’ ,Status='unew’)
Dpen(Unit=10,File=’XTRUTH.PRN’,Status=’nevw’)
Open(Unit=11,Fiies’YTRUTH.PRN’,Status=’nes’)
Dpen(Unite12,Files’XMEAS.PRN’ ,Status=’nev’)
Open(Unit=13,File=’YMEAS.PRN’,Status=’nev’)
Open(Unit=14,File=’XEST.PRN’,Status=’new’)
Open(Unite=16,File=’YEST.PRN’,Status=’new’)
Open(Unit=16,File=’XNOISE.PRN’,Status=’new’)
Open(Unit=17,Filo=’YNOISE.PRN’,Status=’nev’)
Open(Unit=20,File=’ZXNOISE.PRN’,Status=’nev’)
Open(Unitw2! ,File=’ZYNOISE.PRN’,Status=’new’)
Opon(Unit=22,File=’P11.PRN’,Status=’'ney’)
Open(Unitw23,File=’P22.PRN’,Status=’nev’)
Open(Unit=24,File=’EPSILON.PRN’,Status=’ner*)
Open(Unitw26,File=’XTILDE.PRN’,Status=’nev?*)

c START MAIN PROGRAM (73 POINTS CULLECTED)
Cw= 73

c COMPUTE MODELLING NOISE (SET TO ZERO)
DO K=1,C
CALL NOISE(0,0,WX(K),12)
CALL NOISE(0,0,WY(K),12)
Write(16,*) WX(K)
Write(17,+) WY(K)
end do

c SET INITIAL VALUES

X(1)=10.0
Y(1)=0.0

D-1

2(1,1)=10.0
2(2,1)=0.0
P(1.1) =
P(1,2) =
P(2,1) =
P(2,2) =
F(1,1) = €0SD(E.0)
F(1,2) = -0.5«SIND(5.0)
F(2,1) = 2«SIND(5.0)
F(2,2) = C0SD(5.0)

CALL MTXTRP (F,FT,2,2)
Qd1,1) =« 0.0

-0 O
SDo0cCoO

QL2,2) =

CALL MTXTRP (H,HT,2,2)
R(1,2) = 0.0

R(2,1) = 0.0

IS = 0

XHATOLD(1,1) = 10.0
XHATOLD(2,1) = ¢.0

c START HAIN LOOP
DO K=1,C

c WRITE INITIAL VALUES TO FILES
Graph(1,K) = K
Vrite(10,%) X(K)
VWrite(11,+) Y(K)
Graph(2,X) = X(K)
Graph(3,K) = Y(KX)
Graph(4,K) = Z(1,1)
Graph(6,K) = Z(2,1)
Write(12,+) 2(1,1)
Vrite(13,*) 2(2,1)
Graph(8,K) = P(1,1)
Graph(9,K) = P(2,2)
Write(22,*) P(i,1)
Write(23,s) P(2,2)
Graph(6,K) = XHATOLD(1,1)
Graph(7,K) = XHATOLD(2,1)
Vrite(14,%) XHATOLD(1,1)
Write(15,*) XHATOLD(2,1)

c NORMALIZED STATE ERROR {(EPSILOR = XTILDET+PINV*XTILDE)
c XHATOLD = XHATN

XTILDE(1,1) = X(K)~XHATOLD(1,1)

XTILDE(2,1) = Y(K)-XHATOLD(2,1)

CALL MTXTRP (XTILDE,XTILDET,2,1)

CALL MTXINV(P,PI,TEMP1,2,IS)

CALL MTXMUL (XTILDET,PI,TEMP1,1,2,2)

D-2

CALL MTXMUL(TEMP1,XTILDE,EPSILUON,1,2,1)
Graph(10,K) = EPSILON(1,1)

Write(24,#) EPSILON(1,1)

Graph(i1,K) = XTILDE(1,1)

Write(25,%) XTILDE(1.1)

¢ STATE PREDICTION; ZUAT = F*XHATOLD
XHAT(1,1)=F (1, 1)XHATOLD(1,1)+F(1,2) «XHATOLD(2, 1)
XHAT(2,1)=F(2,1)»XHATOLD(1,1)+F(2,2) «XHATOLD(2,1)

¢ TRUTH; X(K+1}) = FeX(K)
X(K+1) = F(1,1)eX(K)+F(1,2)sY{K)+NX(K)
Y(K+1) = ¥(2,1)*X(K)+F(2,2)=Y(F)+¥Y(K)

C COMPUTE MEASUREMENT BUISE

2(1,1) = 0,.25ABS(X(K+1))

R(2,2) = 0.2¢ABS(Y(K+1))

CALL NOISE(O,R(1,1),VX(K+1),12)
CALL NOISE(O,R(2,2),VY(K+1),12)
Write(20,s) VX(K+1)
Write(21,¢) VI(K+1)
Graph(12,K+1) = VX(K+1)
Graph(13,K+3) » VY(K+i)

4 MEASUREMENT; 2 = X+V
2(1,1)=X(K+1)+VX(K+1)
Z(2,1)=Y(K+1)+VY (K+1)

c MEASUREMENT PREDICTICON (ZHAT=HeXHAT)
CALL MTXMUL(H,XHAT,ZHAT,2,2,!)

C INNOVATION (NU=Z-ZHAT)
CALL MTXSUB(Z,ZHAT,NU,2,1)

¢ STATE PREDICTION COVARIANCE (P=FsP«FT+Q)
CALL MTXHUL(F,P,TEMP1,2,2,2)
CALL MTXMUL(TEMP:,FT,TEMP2,2,2,2)
CALL MTXADD(TEMP2,Q,P,2,2)

c INNOVATION COVARIANCE (SwHsPsHT+R)
CALL MTXMUL(H,P,TEMP1,2,2,2)
CALL MTXMUL(TEMP1,HT,TEMP2,2,2,2)
CALL MTXADD(TEMP2,R,S,2,2)

c FILTER GAIN (WsP&HT#SI)
CALL MTXINV(S,SI,TEMP1,2,IS5)
CALL MTXMUL(P,HT,TEMP1,2,2,2)
CALL MTXMUL(TEMP!,SI,W,2,2,2)

¢ UPDATED STATE COVARIANCE (PNw=P-W+S#WT)
CALL NTXTRP (W,WT,2,2)
CALL MTXMUL(V,S,TEMP1,2,2,2)
CALL MTXMUL(TEMP1,WT,TEMP2,2,2,2)
CALL MTXSUB(P,TEMP2,PN,2,2)
P(1,1) = PN(1,1)

P(1,2) = PN(1,2)
P(2,1) = PN(2,1)
P(2,2) = PN(2,2)

C UPDATED STATE ESVIMATE (XHATN=XHAT+WeNU)
CALL MTXMUL(W,¥U,TEMP1,2,2,1)
CALL MTXADD(XHAT,TEMP1,XHATN,2,1)
XHATOLD(1,1) = XHATN(1,1)
XHATOLD(2,1) = XHATN(2,1)
end do

¢ PLOT ROUTINE FOR OUTPUT DATA
NGH=13
Nameg(1) = °X’
Nameg(2) = ’X TRUTH’
Naweg(3) = *Y TRUTH’
Nameg(4) = ’X MEASURED’
Nameg(6) = 'Y MEASURED’
Namog(6) = ’X ESTIMATE’
Naweg(7) = 'Y ESTYMATE’
Nameg(8) = 'P11, X COVAR’
Namag(9) = P22, Y COVAR’
Nameg(10) = ’EPSILON’
Nameg(11) = ’XTILDE'
Nameg(i2) = ’MEAS NOISE X’
Nameg (13) = 'MEAS NOISE Y*

IOPT =

NPT » 73

WRITE(S) NGR,NFT,IUPT

WRITE(8) (Nameg(jJ,j=1,NCR)

WRITE(8) ((Graph(j.k),k=1,NPT),j=1,NGR)
WRITE(9,%) NGR,¥PT,IOPT

WRITE(9,#) (Nameg(j).j=1,NGR)

WRITE(9,*) ((Graph(j,X) .k=1,NPT),j=1,NGR)

C CLOSE DATA FILES
Close(8)
Close(9)
Close(10)
Close(11)
Close(12)
Close(13)
Cloza(14)
Close(15)
Clone(16)
Close(17)
Close(18)
Close(19)
Close(20)
Close(21)
Closa(22)
Close(23)
Close(24)
Close(25)

A

C
C
c
c
C

00001

End

THIS PROGRAM CALLS RANDOM GENERATOR TO GENERATE GAUSSIAN NOISE.

N is set 12

SUBROUTINE NOISE(XMEAN,VARIANCE,RNDMN,N)
REAL A,Y,RKDMN,XMEAN,VARIANCE
INTEGER ¥

COMMON /SEED/ 11,12

A=0.0

DD 1 I=1,N

Y=RAN(I1,12)

AwA+Y

CONTINUE

RNDMN=(A-N+0.E5)#SQRT (VARTANCE) +XHEAN
RETURN

END

Casninssesnssss SUBROUTINES OF MATRIX OPERATIONS #okkisshnsnksrs

C

C

SUBROUTINE MTXMUL (A,B,C,N1,N2,N3)
A IS NisN2; B IS N2#=N3; C = A+B IS N1«N3
real A(N{,N2), B(N2,¥3), C(N1,6N3)
DO I = 1,1
DO J =~ {,N3
c(1,J]) = 0.0
D0 K = 1,N2
C(I,J) = C(I,J)+A(I,K)*B(K,J)
end do
end do
end do
RETURN
END

SUBROUTINE MTXADD (A,B,C,N1,N2)

C = A+B; ALL ARE NisN2
real A(N1,N2), B(N1,N2), C(N1,N2)
po I = 1,Nt

DO J = 1,N2

C(I,3) = AL, D+B(I,T)

end do
and do
RETURN
END

SUBROUTINE MTXSUB (A,B,C,N1,N2)
C = A-B; ALL ARE N1=N2
real A(N1,N2), B(N1,N2), C{Ni,H2)
p0 I=1,NS
DO J = 1,N2
C(I,J) » AL, D)-e(,d)
end do

~v

oaoaan

00001

06002

00006
00004

00005
00007

00008
00009

end do
RETURN
END

SUBROUTINE MTXZRO (A,N1,B2)
A= 0; A IS NIxN2
real A(N1,N2)
DO I = 1,N1
DO J = {,N2
A(1,J) = 0.0
end do
end do
RETURN
END

SUBRCUTINE MTXTRP (A,B,N1,N2)

B = TRANSPOSE QOF A; A IS Ni=N2 AND B IS N2«N{
real A(N1,N2), B(N2,N1)
DO J = 2,N2

DO I =1,N1

B(J,I) = A(T, D)

end do
and do
RETURN
END

SUBROUTINE MTXINV{A,AINV,B,KC,1S)

AINV=INVERSE OF A, BOTH ARE KC#KC

B IS A WORKING ARRAY
WHEN IS=0, SUCCESSFUL RETURN. IS=i A IS SINGULAR.

real A(KC,KC),AYiv(KC,KC),B(KCG,KC)
REAL TEMP,COMP ,EPSKIP
N

IS=i

EPSKIP=1.0E-35

DO 1 I»1,KC

DD 1 J=1,KC
AINV(I,1)=0.0
B(I,N)=A(I,D)

DO 2 i=1,KC
AINV(I,I)=1.0
CONTINUE

DO 3 I=1,KC

COMP=0.0

Knl
IF(ABS(B(X,I))-ABS(COMP))5,6,4
COMP=B(K,I)

N~k

K=K+1

IF(K~KC)6,6,7
IF(B(N,X))8,51,8
IF(N-1)61,12,9

DO 10 M=1,KC
TEMP=B(I,X)

00010
00012

0013

00014
00016

00030

00017
00016
00003

00051
00052

B(I,M)=B(N,H)

B(N, H)=TEMP

TEMP=AINV(I,M)

AINV/I M)=AINV(N,M)
AINV(N,M)=TEMP

CONTINUE

TEMP=B(I,I)

DO- 13 M=i1,KC
AINV{I,M)=AINV{I,M)/TEMP

B(I. K)=u(I,M)/TEMP

DO 16 J=1,KC

IF(J-1)14,16,14
IF(B(J,I))16,16,15

CONTIR'E

TEMP=B(J,I)

DO 17 N=i,KC

IF (ABS (TEMP) .LT.EPSKIP)GO TO 17
IF (ABS(AXNV(I,N)).LT.EPSKIP)GO TO 30
AINV(J,N)=AINV(J,N)-TEMP*AINV(I,N)
CONTINUE '
IF(ABS(B(I,N)).LT.EPSKIP)GO TO 17
B(J,N)=B(J,N)-TEMP*B(I,N)
CONTINUE

CONTINUE

CONTINUE

RETURN

WRITE(6,52)

FORMAT(EX, *THE MATRIX IS SINGULAR’)
IS=0

RETURN

END

SUBRUUTINE IDEMTX (A,N)
A IS NsX

real A(N,N)

DI I =1,
D0 J = {,N

A(I,J) = 0.0
IF(I.EQ.J) A(I,)) = 1.0

end do

end do

RETURN

EXD

D-7

le

t

incluea.

wcTay;

include matrix;

include matrixop;

include noise;
$include "math.cdl";

-= VARIABLE LIST
ddt

iss

five2rad

il

Appendix E. Developed CIDL Module

store(bool};

: store(tool);
: store(real);
: store(real);

k, iopt, ugr, j, ¢, npt, i2 :
L, ¥, 9, Uy . -
xhatn, xhatold -
v, vy =
z, xhat, zhat, nu -
p, f, ft, r, pn, ¥, ®t, pi -
templ, temp2, q, h, 8, ht, si -
1 tilde -
- tildat -
- epsilon = matrixz_crea“e(real, 1,
«p8ilon =
7raph -
nameg -
-~ OPEN FILES USED TO STORE DATA
£8 : stream(char) = create(char,
£3 : stresu(char) = create(char,
£10 : stve:n{char) = create(char,
<1. : strewn(chaz) = create(char,
£12 : strezm(char) = create{char,
£.:3 : strowsicraxr: = create(char,
14 : ¢ reaw‘char) = create(char,
£156 : streanichar) = create(char,
{16 : sutrear(char) = create.char,
£17 : stream{(ch.r) » create(char,
£20 : stream(chi:) = create(char,
£21 : ~tream(chax) = create(char,
£22 - mtream(~haxr) = create(char,
£23 : stream(Lhax) = create(char,
£24 : stream{char) = create(char,
£256 : stream(char) = create(char,
in

-- put here to label the files
torumat (£8,"KALMAN.PLT %"%") ;
“ormat (£3,"KALMAY .PL~%"V") ;

Jcrmat (£10,"XTRUTH.PRN™%"%");
ferxat (£11, "YTRUTH.PRNTL7R");

store(int);

-- debug variable only

-- changed frox integer

array_creatae(real, 100);
matrix_create(real, 2, 1, 0.0);
array_create(real, 100);

matrix_creata(real, 2,
matriz_create(real, 2,
matrix_create(real, 2,
matrix_create(real, 2,
matrix_create(real, 1,
-= there was
matrix_create{real, 2,
matrix_create(int, 20,

1, 0.0);

© o 000
OO0 O0COo

i Q)
2, 0.0)
2, 0.0)
i, 0.0)
2, 0.0)
a problem vith dimension in matmul
2, 0.0);

200, 0.0);

vas real

array_create(string, 20);

“kalpan_plt");

*zalmwn_pl");
“xtruth");
"ytruth');
"xmeas™);
Ily.eu") :
"zest");
“yest");
“gnoise");
“ynoise");
"zinoise");
“zynoise");

“p11");
"p22");
"epsilon");
“xtilde™);

-~ need to use create instead of open

foruat(£12,"XMEAS.PRN~1"%"3;
format(£13,"YHEAS.PRN"%~%4");
format(f14,"XES1.PRN"%4"%");
forrat(£15,"YEST.PRN"%%");
tormat(£16,"XNOISE.FRN"Y"%");
format (£17,"YNOISE.PRH %~ %");
tormat(£20,"ZXNOISE.PRY"X"%");
forwat (321, "ZYNOISE.PRN"%"%"):
format (£22,"P11.PRE"%™%4") ;
format(£23,"P22.PRA-Z"%");
format (£24,"EPSILON.PRN"Y 4" ;
format(£25,"XTILDE.PRN%~%");

ddt .= false; -- debugging flag

== START MAIN PRUCRAN

==ii :» 12345; -- seed cvastant, too largr, generates 0 < i < 1234%L
il 1= 1.0;
i2 := 54321; -~ seed constant
c =73 -- (NUMBER POINTS COLLECTED)

-- COMPUYE HMODELINSG MOXISE (SET TO ZERO)
k :=1;
vx.initialize(C.0); =-- test only
vy.initialize(0.0); ~- test caly
vi.initialize(0.0}; -- test cnly
vy.jnitialize(0.0}; -- test only
loop
shen comtent(x} <= content(c} =
vx.assign(k, mekenoiss(0, 0, 12, i1)); -- had %o ba rewrittan completely
wy.aspign(k, e2kenoise(0, 0, 12, i1)); -- ws an assign .natead of passing
-~ the array element tc change
forwat(£16, “"d “%", wx.index(k));
zormat {117, ""d “¥", wy.index(k));
k=K1
erd loop:

-= SET INITIAL VALJES
7.initialize¢(0.0); - teat only
x.assign(1, 10.0);
if content{(ddt) then == if statsment for debugging/development
format (terminal,"~%x arxay = ");
x.print()
ead if;

.initialize(0.0); -- tewt omly

.ensign(1, 0.0);

if concent(ddt) then == if statement for cebugging/developuant
formas (*wminal," Ly array = ");

y.print..

end 1f;

- -

z.aswign(l, 1, 10.0);
z.assign’2, 1, 0.0);
it conteut(ddt) then -~ if statement for dobugging/develope:nt

format (terminal ,"“¥%z matrix = ");
z.print ()
end if;

p-assign(l, 1, 1.0);
p.assign(i, 2, 0.);
p.assign(2, 1, 0.0);
p-as3ign(2, 2, 1.0);

if content(adt) then -= ii statement for debugging/development
format (terminal,"p matrix = ");
p.print()
end it;
tive2rad := 2+math.pie5.0/360; == the PORTRAN called for degraes, LISP uses radiavs

f.assign(i, 1, math.cos(five2rad));
f.assign(1, 2, -0.5 ¢ wath.sin{five2rad));
f.assign(2, 1, 2 + math.sin(fiveZrad));
1.asoage(2, 2, sath.cos(five2rad));

i? content(d4t) then -~ if statement foxr debugging/development
format (terminal,"f matrix = ");
f.print()
end if;
satrix_transposs(f,ft);

if content(ddt) then -- if statement for debugging/development
format{terminal,"t matriz traasposcs ");
ft.print|)
end if;

-~ q.initialize(0.0); =-- not needsd
if content(ddt) then «=- if stateasnt for debugging/development
format (terminal,"q watrix = ");
q.print()
ead if;

h.assign(i, 1, 1.8);
h.asxign(i, 2, 0.0);
h.assign(2, 1, 0.0);
h.assign(2, 2, 1.0);
it coatent(ddt) then -- if statsaent for debugging/developaent
format (tersinal,"h matrix = ");
h.priat()
end if;

matrix_transpose(h,ut};

if contunt(dit) then =~ if statement for debugging/development
format (terminal,"h satriz transpose= ");

ht.print()

end if;

r.assign(l, 2, 9.0);

r.assign(2, 1, 0.0);
if conteut(ddt) then -- it otatesent for debugging/development
format (Lerminal,"z matriz = ");
r.print()

end if;
iss := faloe;

xhatold.assign(1, 1, 10.0);
xhatold.assign(2, 1, 0.0);
if content{ddt) then -~ if statement for debugging/development
format (tersinal,"zhatold matrix = ");
xhatold.print ()
end if;

-- START MATN LOOP
k =~ 1;
loop

~+ WRITE INITIAL VALUES TO FILES

when content(k) <= coztent(c) =>
Jurmat (terminal, "“d“%", content(k)); -- monitor loop progress
graph.assign(i, k, X);
tormat (£10, *~d “%", x.index(k));
lormat(£11, *~d “%4", y.index(k));
graph.assign(2, k, x.index(k));
graph.assign(3, k, y.index(k));
graph.assign(4, k, z.index(1, 1));
graph.asaign{6, k, z.index(2, 1));
format(£12, "~d ~%", z.index(1, 1));
foruwat(f13, "d “%", z.index(2, 1));
graph.assign(8, k, p.index(1, 1));
graph.assign(9, k. p.index(2, 2));
format (222, "~d %", p.index(1, 1));
tormat(223, ""d “%", p.index(2, 2));
graph.assign(6, k, xhatold.index(1, 1));
graph.assign(7, k, xhatold.index(2, 1));
format/f14, "~d ~%", xhatold.index(1, 1));
format(#15, "“d %", xhatold.index(2, 1));

-- EORMALTZED STATE ERROR (EPSILOM = XTILDETPINVeXTILLE)
-= XHATOLD = XHATN
stilde.assign(l, 1, x.index(k) - rhatold.index(i, 1));
ztilde.assigu(2, 1, y.index(k) - xhatold.index(2, 1));
matrix_transpose(xtilde,xtildet);
if content(ddt) and content(k) = 1 then -- if statemant for debugging/development
put ("ztilde");
xtilde.print();
put("xtildet");
xtildet.print()
end it;
-- matrix_inv(p, pi, templ); <-- changed the templ to ias
matrix_inv(p, pi, iss);
it cont~nt(ddt) and content(k) = i then ~~ if statement for debugging/development
put("p");
p.print();
’“t(upiu) :
pi.print();
put(“iss");

E-4

put(iss)

end if;
patrix_mult(xtildet, pi, templ);

if content(ddt) and content(k) = 1 then -- if statement for debugging/development

put("xtildet");

xtildet.print();

put{"pi");

pi.print();

put (“templ");

templ.print()

end if;
matrix_mnlt(tempi, xtilde, epsilon);

if content(ddt) and content(k) = 1 then -- if statement for debugging/development

put("teapl");

templ.print();

put("xtilde");

xtilde.print();

put (“epsilon’);

epsilon.print ()

end if; '
graph.assign{10, k, epsilon.index(1, 1));
format (£24, "~d ~%X", epsilon.index(1, 1));
graph.assign(11, k, xtilde.index(i, 1));
tormat (£26, "~d %", xtilde.index(1, 1));

== STATE PREDICTICN (XHAT = F&XHATOLD)
xhat.assign(1, 1, f.index(1, 1)exhatold.index(1, 1)
+ f.index(1, 2)sxhatold.index(2, 1));
xhat.assign(2, 1, f.index(2, 1)sxhatold.index(1, 1)
+ f,index(2, 2)exhatold.index(2, 1});
if content(ddt) and content(k) = 1 then -- if statement for debugging/development
put("xhat");
xhat.print ()
end if;

-~ TRUTH (X(K+1) = 1#X(K))
x.assign(k+1, f.index(1, 1)ex.index’k)
+ f£.index(1, 2)»y.index(k)
+ wx.index(k));
y.assign(k+l, f.index(2, 1)ex.index(k)
+ f.index(2, 2)+y. indox(k)
+ uy.index(k));

~- COMPUTE MEASUREMENT EO0ISE
r.aseiga(l, 1, 0.2emath.abs(x.index(k+1)));
r.assign(2, 2, 0.2¢math.abs(y.index(k+1))); -- had r(r,1) not r(2,2)
vx.assign(k + 1, makenoise(0, r.indea(1, 1}, 12, i1}); -- *;’ error in type caussd probles hers
vy.assign(k + |, makenoise(0, r.indexz(2, 2), 12, il1));
format (220, "~d “X", vx.index(k + 1));
tormat(£2i, ""d %", vy.index(k + 1));
graph.assign(i2, k+1, vx.index(k+1));
graph.assign(13, k+1, vy.index(k+1));

-- MEASUREMENT (Z = X+V)
z.assign(i, 1, x.index(k+1)+vx.index(k+1));

E-5

z.assign(2, 1, y.index(k+1)+vy.index(k+1));

~~ MEASUREMENT PREDICTION (ZHAT = H#XKAT)
aatriz_mult(h, xhat, zhat);

INKOVATION (NU = Z-ZHAT)
watrix_sub(z, zhat, nu);

STATE PREDICTION COVARIANCE (P = F«PsFT+Q)
matrix_wult(f, p, tempi);
matrix_pult(tempi, £t, temp2);
matrix_add{temp2, q, p);

IENOVATION COVARIANCE (S = HePsHT+R)
matrix_sult(h, p, templ);
matrix_sult(tempi, ht, temp2);
matrix_add(temp2, r, 8);

FILTER GAIN (VW = PeHT#SI)

-~ patrix_inv(s, si, templ); --old
matrix_inv(s, si, iss);
matrix_mult(p, ht, templ);
matrix_mult(templ, si, w);

-

1

UPDATE STATE COVARIANCE (PN = P-WeS+§T)
matrix_transpose(v, wt);
matrix_sult(v, s, templ);
matriz_mult(templ, wt, temp2);
matrix_sub(p, tuap2, pn);
p.assign(i, i, pn.index(1, 1));
p-assign(l, 2, pn.index(i, 2));
p.assign(2, 1, pn.index(2, 1));
p.assign{2, 2, pu.index(2, 2));

== UPDATED STATE ESTIMATE (XHATN » XHAT+WeNU)
matrix_mult(v, nu, temp3);
matrix_add(xhat, temp!, xhatn);
xhatold.assign(l, 1, xhatn.index(l, 1));
xhatold.assign(2, 1, xhatn.index(2, 1));

kimk+|
end loop;

if content(ddt) then -- if statemsnt for debugging/development
p“t (“graph") ;

graph.print() -~ print loop result

end if;

~~ PLOT ROUTINE FOR OUTPUT DATA
ngr := 13;
nameg.assign(1, "k");
nameg.assign(2, "x truth");
nareg.assign(3, "y truth");
naneg.assign/%, "x weasured");
nameg.asaign(G, "y weasured");

nameg.acsign(6, "x estimate");
nameg.assign(7, "y estimate");
nameg.assign(8, "pi1, x covar");
nameg.assign(?, "p22, y covaz');
nameg.assign(10, "“epsilon");
pameg.assign(ii, "xtilde");
naneg.assign(12, "meas noise x");
nameg.assign(13, "meas noise y");

if content{ddt) then -- if statement for debugging/development
put (“nameg") ;

nameg.print ()

end if;

iopt := 1;
apt := 73; -~ related to c above
~- the cidl output statement is format()
~~ looks like write() can also be used
format (£8 ,"~d “d ~d ~%", content(ngr), content(npt), content(iopt));

-- write(8) (nameg.index(j), j := 1, ngr) -- note FORTRAN use of amsignmert here
j =1

format (8, "~a ~d “%", nameg.index(j), content(ngr));

jm

k :=1;

format (£8, "~d “d “d “%", graph.index(content(j), content(k)), content(npt), content(ngrl));
format (29 ,""d "d ~d ~%", content(ngr), content(npt), content{(iopt));

hIEL IR

format (9, ""a ~“d ~%", nameg.index(j), content(ngr));

j =1,

k= 1

format (19, "~d “d "d %", graph.index(content(j), content(k)), content(npt), content(ngr));

== CLOSE DATA FILES

close(£8);
close(f9);
close(£10);
close(f11);
close(£12);
close(£13);
closa(£14);
close(2£15);
close(£16);
close(£17);

-~ close(£18); =-- this vas not used
«= close(£19); -- this vas not used
close(£20);
close(f£21);
close(£22);
close(£23);
close(£24);
close(£26);

Q
end lat

10.

11,
12,
13.

14.

15.

16.

17.

i8.

Bibliography

. “M. C. Escher: Twenty-Nine Master Prints,”. Abrams, 100 Fifth Ave., New York, NY 10011,

1983. Photos by William Wegman.

. Anderson, Christine and Merlin Dorfman, editors. Aerospace Software Engineering, 156.

Progress in Astronautics and Aeronautics. 376 L’Enfant Promenade SW, Washington, D.C.
20024-2518: American institute of Astronautics and Aeronautics, Inc., 1991.

. Arnold, Robert S. “Software Reengineering,” IEEE Conference on Software Maintenance

(November 1990).

. Bar-Shalom, Yaakov and Thomas E. Fortmann. Tracking and Data Association, 179. Mathe-

matics in Science and Engineering. San Diego, California: Academic Press, Inc., 1988.

. Biggerstaff, Ted J. “Design Recovery for Maintenance and Reuse,” IEEE Computer, 36-49

(July 1989).

. Brooks, Jr., Frederl;ck P. The Mythical Man-Month: Essays on Software Engineering. New

York, New York: McGraw-Hill Book Company, 1975.

. Byme, Eric J. A Formal Process Model for Software Reengineering. Contract Research,

Kansas State University, November 1991.

. Cardow, James E. and Eric J. Byrne. “Verification and Validation in the Re-engineering

Process,” Publication Pending {1992).

. Chikofsky, Elliot J. and James H. Cross II. “Reverse Engineering and Design Recovery: A Tax-

onomy,” IEEE Software, 13-17 (January 1990).

Chu, Wiliam ard Sukesh Patel. “Software Restructuring by Enforcing Localization and Infor-
mation Hiding,” IEEE Conference on Software Maintenance, 42-49 (November 1992).

Hoare, C. A. R. Commnunicating Sequential Processes. Prentice-Hall, 1985.
Lewis, Ted. “Code Generators,” IEEFE Software, 67-69 (May 1990).

Lockheed Software Technology Center, Lockheed Palo Alto Research Laboratory, Organization
9610, Building 254E, 3251 Hanover Street, Palo Alto, CA 94304-1187. Software User’s Manual
for the Automatic Programming Technologies for Avionics Software (APTAS) System, June
1991.

Miller, Alan R. Pascal Programs For Scientists and Engineers. Berkeley, California: SYBEX,
Inc., 1981.

Neighbors, James M. “The Draco Approach to Constructing Software from Reusable Compo-
nents,” IEEE Transactions on Software Engincering, SE-10(5):564-574 (September 1984).

Pressman, Roger S. Software Engineering: A Practitioner’s Approach. New York, New York:
McGraw-Hill Book Company, 1987.

Rugaber, Spencer, et al. “Recognizing Design Decisions in Programs,” IEEE Software, 46-54
(January 1990).

Spivey, J. M. Understanding Z. Cambridge University Press, 1988.

BIB-1

Vita

Captain Chester A. Wright, Jr. was born on 21 September 1954 in Greenville, Mississippi. He
graduated from Greenville High School in 1972, and in 1974 he joined the USAF. Upon completion
of basic training, he received technical training at Chanute AFB, IL and was later stationed at
Ellsworth AFB, SD. There he worked as a Missile Systems Analyst Specialist and a Maintenance
Scheduler until November 1979. Captain Wright proceeded to Lowry AFB, CO and received tech-
nical training as a Precision Measuring Equipment Specialist and remained at Lowry as a Technical
Instructor until January 1984. During this period he also received an Associate in Applied Science
in General Electronics Technology from the Community College of the Air Force. He attended the
University of Colorado at Denver and graduated with a Bachelor of Science in Electrical Engineer-
ing in August 1986. Upon graduating from Officer Training School in April 1987, he was assigned
to the Electronic Security Command as an Operational Test and Evaluation manager. Captain

Wright entered the School of Engineering, Air Force Institute of Technology, in May 1991.

Permanent address: 414 Coleman Street
Greenville, MS 38701

VITA-1

OME No 0704-0188 i

REPORT DOCUMENTATION PAGE Form Approved

e . LTI B B L T TV R

JITNEANIC, gt tea I B Ll I S Y o A A T T L U PRI

1. AGENZCY USE ONLY (leave bisnk) 2. REPQRT DATE 3. REPORY TYPE AN DATES ZOVERED

December 1992 Master’s Thesis
4. TITLE AND SUBTITLE - 5. FUNDING NUMBERS 1
, Design Recovery for Software Library Population !

i
| - l
6. AUTHORIS) |
Chester A. Wright, Jr., Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS{ES) 8. PERFORMING ORGANIZATION

Air F I . £ Tecl | W 1 45433-6583 REPORT HUMBER
1Ir I'orce Institute of ‘Technology, WPAFB OIll 45433-6583 AFIT/GCS/ENG/92D-23

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

. . AGENCY REPORT NUMBER
Wright Laboratories/AART
Wright-Patterson AFB, OH 45433-6543

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT I 120, DISTRIBUTION CODE
Approved for public release; distribution unlimited

1

13, ABSTRACT (Marimum 200 words)

‘The thesis research investigated design recovery as a means of populating a reuse library. The targeted library

was part of the Automatic Programming ‘Technologies for Avionics Systems (APTAS). APTAS uses a knowledge

base of forins, to present questions to a user, and rules, to select the forins to present and choose existing library
| modules to use in composing a n2w system. The approach applied the reengineering model developed by Eric

1 Byrne to accomplish planning for the project, expanded the renovation phase of this model to cover the actual

i design recovery, and applied the expanded model to populating the library.

i Using the model in the project showed that design recovery is feasible in populating the library. However, if
‘he recovered design could not be used directly, it could be used as a guide in leveloping new components.
\dditionally, certain modules make better candidates than others. Ideul candidates are self-contained in that

{ they receive a value, perform a computation, and return a value. Once the module starts performing too many

+ operations, expertise is required in the module behavier in order to separate the component for reuse.

!
l

Sre———n ¢ ————

14. SUBJECT TERMS 15. NUMBER OF PAGES
Software Maintcnance, Reverse Engineering, Design Recovery, CIDL, FORTRAN, 92
+ APTAS 16. PRICE CODE
“17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
4 OF REPORT OF THIS PAGE OF ABSTRACT
i UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540.01.280 Standard form 298 (Rev 2-89)

Deag-epend by ANSE Std 7 39-18

